
MAPPING THE DEVELOPMENT 
OF AUTONOMY IN WEAPON 
SYSTEMS
A primer on autonomy 

vincent boulanin   

WORKING PAPER

December 2016



Mapping the development of 
autonomy in weapon systems
A primer on autonomy

vincent boulanin



Signalistgatan 9 
SE-169 72 Solna, Sweden 
Telephone: +46 8 655 97 00 
Email: sipri@sipri.org 
Internet: www.sipri.org

STOCKHOLM INTERNATIONAL 

PEACE RESEARCH INSTITUTE

SIPRI is an independent international institute dedicated to research into conflict, 
armaments, arms control and disarmament. Established in 1966, SIPRI provides 
data, analysis and recommendations, based on open sources, to policymakers, 
researchers, media and the interested public.

The Governing Board is not responsible for the views expressed in the publications 
of the Institute.

GOVERNING BOARD 

Sven-Olof Petersson, Chairman  (Sweden)
Dr Dewi Fortuna Anwar  (Indonesia)
Dr Vladimir Baranovsky  (Russia)
Ambassador Lakhdar Brahimi  (Algeria)
Ambassador Wolfgang Ischinger  (Germany)
Professor Mary Kaldor  (United Kingdom) 
Dr Radha Kumar  (India)
The Director

DIRECTOR

Dan Smith  (United Kingdom)

© SIPRI 2016



Acknowledgements
The SIPRI project on Autonomy in Weapon Systems is supported by the Federal 
Foreign Office of Germany, the Ministry of Foreign Affairs of the Netherlands, the 
Ministry for Foreign Affairs of Sweden, and the Federal Department for Foreign 
Affairs of Switzerland. 

The author is indebted to the experts who accepted to participate in background 
interviews for their rich and valuable input. The author would also like to acknowledge 
Maaike Verbruggen’s invaluable contribution to the literature review and data 
collection. Lastly, the author is grateful to the reviewers for their very constructive 
feedback.

Responsibility for the information set out in this working paper lies entirely with 
the author.





Contents
Acknowledgements  iii
Abbreviations vi
Preface vii

1. Introduction 1

2. Searching for definition: what is autonomy? 3
I. Autonomy: a three-dimensional concept 3

3. Situating autonomy: where is autonomy in weapon systems? 7
I. Applications of autonomy in weapon systems 7

II. Autonomy as it applies to use of force 8

4. Unravelling the machinery 11
I. How does autonomy work? 11

II. What are the underlying technologies? 14

5. Creating autonomy 17
I. How difficult is it to achieve autonomy? 17

II. What is feasible with today’s technology? 18
III. How important is machine learning to future advances 23

of autonomy in weapon systems?

6. Conclusions: key takeaways for the Convention on 27
Certain Conventional Weapons discussions

Appendix A: Existing definitions of autonomous weapon systems 29

List of boxes, tables and figures
Box 1. Machine-learning methods 24
Box 2. Deep learning  25
Table 1. Generic categorization of autonomous functions in 8

military platforms and systems 
Table 2. Examples of systems that select and engage targets without 9

direct human involvement
Figure 1. Anatomy of autonomy 14



Abbreviations
CCW Convention on Certain Conventional Weapons
GPS Global Positioning System
GSM the Global System for Mobile
HRW Human Rights Watch
IHL International humanitarian law
LAWS Lethal autonomous weapon systems
NASA National Aeronautics and Space Administration
NGO Non-governmental organization
UAV Unmanned aerial vehicles



Preface
Since 2013 the governance of lethal autonomous weapon systems (LAWS) has been dis-
cussed internationally under the framework of the 1980 United Nations Convention on 
Certain Conventional Weapons (CCW), which regulates weapons that may be deemed 
to have an excessively injurious or indiscriminate effect.1 Issues of concern include the 
moral acceptability of LAWS, their potentially negative impact on interstate relations 
and stability, their possible facilitation of recourse to the use of force, and their com-
patibility with international humanitarian law and international human rights law. 2

The discussion is still at an early stage. The question of whether the states parties to 
the CCW should take formal action on LAWS is not yet officially on the agenda, albeit 
it is a key part of the ongoing debate. The Campaign to Stop Killer Robots, a coalition 
of non-governmental organizations (NGOs), and a handful of states are already advo-
cating the adoption of a pre-emptive ban on the development, production and use of 
LAWS.3 Most states, however, have expressed that they are not yet ready to discuss 
this possibility as they are still in the process of understanding the full implications of 
increasing autonomy in weapon systems. 

To support states in their reflection on this issue, and contribute to more concrete 
and structured discussion on LAWS at the various meetings associated with the 
CCW, in February 2016 the Stockholm International Peace Research Institute (SIPRI) 
launched a research project assessing the development of autonomy in military sys-
tems in general and weapon systems in particular. The project entitled ‘Mapping the 
development of autonomy in weapon systems’ was designed based on the assumption 
that efforts to develop concepts and practical measures for monitoring and controlling 
LAWS will remain premature without a better understanding of (a) the techno logical 
foundations of autonomy, (b) the current applications and autonomy capabilities in 
existing weapon systems, and (c) the technological, socio-economical, operational 
and political factors that are currently enabling or limiting advances in the sphere of 
LAWS. The project’s aim, in that regard, is to provide CCW delegates and the inter-
ested public with a ‘reality check’ on autonomy through a mapping exercise that will 
answer a series of fundamental questions: 

1. What is autonomy? How does it work? How is it created?
2. What are the underlying technologies and where are they available or being

developed? 
3. What types of autonomous applications are found in existing and forthcoming

weapon systems? 
4. What are the capabilities of weapons that include some level of autonomy in the

target cycle? How are they used or intended to be used, and what are the principles or 
rules that govern their use? 

5. What are the trends that fuel or limit the advance of autonomy in weapon systems? 
These questions will be addressed in a series of four working papers. Each of these

papers will map the development of autonomy in weapon systems from a different 
perspective. The first working paper is intended to serve as a primer on the techno-
logical foundation of autonomy (technical perspective). The second working paper will 

1 Convention on Prohibitions or Restrictions on the Use of Certain Conventional Weapons which may be Deemed 
to be Excessively Injurious or to have Indiscriminate Effects (CCW Convention, or ‘Inhumane Weapons’ Convention), 
with Protocols I, II and III, opened for signature 10 Apr. 1981, entered into force 2 Dec. 1983, <http://treaties.un.org/
Pages/CTCTreaties.aspx?id=26>.

2 Docherty, B., Losing Humanity: The Case Against Killer Robots (Human Rights Watch/International Human 
Rights Clinic: Washington, DC, 2012); and Sharkey, N., ‘Saying “no!” to lethal autonomous targeting’, Journal of 
Military Ethics, vol. 9, no. 4 (2010).

3 Bolivia, Cuba, Ecuador, Egypt, Ghana, the Holy See, Pakistan, Palestine and Zimbabwe expressed clear support 
for a ban on LAWS. Croatia, Ireland and Sri Lanka are open to considering a ban.



map out the innovation ecosystem that is driving the advance of autonomy in weapon 
systems (economic perspective). The third working paper will provide a systematic 
assessment of the capabilities of autonomy in existing weapon systems (operational 
perspective), while the final working paper will discuss the political drivers and obsta-
cles to the adoption of autonomy in weapon systems (political perspective). These four 
papers will be integrated into a final report to be published in early 2017. 



1. Introduction
Since 2013 the governance of lethal autonomous weapon systems (LAWS) has been 
discussed under the framework of the 1980 United Nations Convention on Certain 
Conventional Weapons (CCW).1 The discussion is still at an early stage, with most 
states parties still in the process of understanding the issues at stake—beginning with 
the fundamental questions of what constitutes ‘autonomy’ and to what extent it is a 
matter of concern in the context of weapon systems and the use of force. States parties 
that took the floor during the three informal meetings of experts that were organ-
ized in 2014, 2015 and 2016 under the auspices of the CCW presented rather different 
interpretations of the defining characteristics of autonomy, thereby contributing to 
confusion as to what types of systems and legal, ethical, operational and security con-
cerns were actually up for discussion. Some states define ‘autonomy’ in a way that 
encompasses a number of existing systems. Others define the term more narrowly, 
which excludes current systems and can be applied only to systems that are not as yet 
in existence. Thus, a number of states parties have stressed that future discussions 
could usefully benefit from further investigation into the conceptual and technical 
foundations of the meaning of ‘autonomy’. 

This working paper is an attempt to respond to that demand. It aims to clarify some 
basic understandings about autonomy: what it is, how it applies to weapon systems, 
how it works, how it is created and what the key technological enablers are. It is based 
on a substantial review of the literature as well as a background series of interviews 
with experts from various expert communities. The next section (section 2) reviews 
existing interpretations of the concept of autonomy. Section 3 maps out possible appli-
cations of autonomy in weapon systems, while section 4 identifies the underlying 
capabilities and technologies on which autonomy may be created. Section 5 discusses 
the current state of autonomy. The concluding section (section 6) presents some take-
away points for future discussions on LAWS within the framework of the CCW. 

1 Convention on Prohibitions or Restrictions on the Use of Certain Conventional Weapons which may be Deemed 
to be Excessively Injurious or to have Indiscriminate Effects (CCW Convention, or ‘Inhumane Weapons’ Convention), 
with Protocols I, II and III, opened for signature 10 Apr. 1981, entered into force 2 Dec. 1983, http://treaties.un.org/
Pages/CTCTreaties.aspx?id=26.





2. Searching for definition: what is autonomy?

I. Autonomy: a three-dimensional concept

In simple terms ‘autonomy’ can be defined as the ability of a machine to execute a task, 
or tasks, without human input, using interaction of computer programming with the 
environment. 1 An autonomous system is, by extension, usually understood as a sys-
tem—whether hardware or software—that, once activated, can perform some tasks or 
functions on its own.

However, autonomy is a relative notion: within and across relevant disciplines, be it 
engineering, robotics or computer science, experts have a different understanding of 
when a system or a system’s function may or may not be deemed autonomous. As pre-
viously identified by Scharre, these approaches can be sorted into three categories.2

The human-machine command-and-control relationship 

A very common approach for assessing autonomy relates to the extent to which humans 
are involved in the execution of the task carried out by the machine. With this approach 
the systems can be classified into three categories. Systems that require human input 
at some stage of the task execution can be referred to as ‘semi- autonomous’ or ‘human 
in the loop’. Systems that can operate independently but are under the oversight of a 
human who can intervene if something goes wrong (e.g. malfunction or systems fail-
ure) are called ‘human-supervised autonomous’ or ‘human on the loop’. Machines that 
operate completely on their own and where humans are not in a position to intervene 
are usually referred to as ‘fully autonomous’ or ‘human out of the loop’. The concept 
of ‘sliding autonomy’ is sometimes also employed to refer to systems that can go back 
and forth between semi-autonomy and full autonomy, depending on the complexity of 
the mission, external operating environments and, most importantly, legal and policy 
constraints. 

The sophistication of the machine’s decision-making process

A more technical approach to autonomy relates to the actual ability of a system to exer-
cise control over its own behaviour (self-governance) and deal with uncertainties in 
its operating environment.3 From this standpoint, systems are often sorted into three 
major categories: automatic, automated and autonomous systems. The label ‘automatic’ 
is usually reserved for systems that mechanically respond to sensory input and step 
through predefined procedures, and whose functioning cannot accommodate uncer-
tainties in the operating environment (e.g. robotic arms used in the manufacturing 
industry). Machines that can cope with variations in their environment and exercise 
control over their actions can either be described as automated or autonomous. What 
distinguishes an automated system from an autonomous system is a contentious issue. 
Some experts see the difference in terms of degree of self- governance, and view auton-
omous systems merely as more complex and intelligent forms of automated systems. 
Others see value in making a clear distinction between the two concepts. Williams, 

1 This definition is based on one previously proposed by Andrew Williams. Williams, A., ‘Defining autonomy in sys-
tems: challenges and solutions’, eds A. Williams and P. Scharre, Autonomous Systems: Issues for Defence Policymakers 
(NATO Headquarters Allied Command: Norfolk, VA, 2015).

2 Scharre, P., ‘The opportunity and challenge of autonomous systems’, eds Williams and Scharre (note 1), p. 56.
3 E.g. ‘Autonomy refers to a robot’s ability to accommodate variations in its environment. Different robots exhibit 

different degrees of autonomy; the degree of autonomy is often measured by relating the degree at which the environ-
ment can be varied to the mean time between failures, and other factors indicative of robot performance.’ Thrun, S., 
‘Toward a framework for human-robot interaction’, Human-Computer Interaction, vol. 19, no. 1–2 (2004), pp. 9–24.
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for instance, presents an ‘automated system’ as a system that ‘is programmed to log-
ically follow a pre-defined set of rules in order to provide an outcome; its output is 
predictable if the set of rules under which it operates is known’. On the other hand, an 
‘autonomous system’:

is capable of understanding higher-level intent and direction. From this understanding and its per-
ception of its environment, such a system can take appropriate action to bring about a desired state. 
It is capable of deciding a course of action, from a number of alternatives, without depending on 
human oversight and control, although these may still be present. Although the overall activity of 
an autonomous unmanned aircraft will be predictable, individual actions may not be.4 

While the distinction between automatic, automated and autonomous can be 
conceptually useful, in practice it is has proved difficult to measure and therefore 
determine whether a system falls within one of the three categories. Moreover, the 
definitions of and boundaries between these three categories are contested within 
and between the expert communities. 

The types of decisions or functions being made autonomous

A third dimension to consider focuses on the types of decisions or functions that are 
made autonomous within a system. This ‘functional’ approach is not incompatible 
with the two other approaches; it acknowledges simply that referring to autonomy as 
a general attribute of systems is imprecise, if not meaningless, as it is the nature of the 
tasks that are completed autonomously by a machine that primarily matters, not the 
level of autonomy of the systems as a whole. Autonomy is best understood in relation to 
the types of tasks that are executed at the subsystems/function level. 5 Some functions 
in weapon systems may be made autonomous without presenting significant ethical, 
legal or strategic risks (e.g. navigation), while others may be a source of greater con-
cern (e.g. targeting). 6 

Autonomy in weapon systems: a situated approach

This working paper and those that follow favour a ‘functional approach’ to auto-
nomy. The notable merit of this approach is that it enables a flexible examination of 
the challenges posed by autonomy in weapon systems. It recognizes that the human- 
machine command-and-control relationship and the sophistication of a machine’s 
decision-making capability may vary from one function to another. Some functions 
may require a greater level of self-governance than others, while human control may 
be exerted on some functions but not others depending on the mission complexity 
and the external operating environment as well as regulatory constraints. Also, the 
extent of human operators’ control or cancel functions may change during the sys-
tem’s mission.

Thus, it could be said that the focus of the research presented in the working papers 
is on the development of autonomy in weapon systems rather than the development 
of autonomous systems per se. The ambition is to discuss the development and appli-
cation of autonomy in a large range of weapon systems in general, not just the few 

4 Mindell, D., Our Robots, Ourselves, Robotics and the Myths of Autonomy (Viking: New York, NY, 2015), p. 12.
5 United Nations Institute for Disarmament Research (UNIDIR), Framing Discussions on the Weaponization of 

Increasingly Autonomous Technologies, UNIDIR Resources no. 1 (UNIDIR: Geneva, 2014).
6 NATO, Uninhabited Military Vehicles: Human Factors Issues in Augmenting the Force, NATO Technical Report 

RTO-TR-HFM-078 (NATO: 2007); Vignard, K., ‘Statement by the United Nations Institute for Disarmament Research’, 
2016 CCW Informal Meeting of Experts on Lethal Autonomous Weapon Systems, Geneva, 12 Apr. 2016, <http://www.
unog.ch/80256EDD006B8954/(httpAssets)/86C96CC8C7A932DCC1257F930057C0E3/$file/2016_LAWS+MX_
GeneralExchange_Statements_UNIDIR.pdf>; and Gillespie, A., ‘Humanity and lethal robots: an engineering per-
spective’, ed. G. Verdirame et al., SNT Really Makes Reality, Technological Innovation, Non-Obvious Warfare and the 
Challenges of International Law (King’s College London: London, Forthcoming).
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types of weapon systems that may be classified as autonomous according to some 
existing definitions (current definitions of autonomous weapon systems are presented 
in Appendix A; the types of weapon systems that are sometimes described as autono-
mous are presented in section 3). 7 

7 For a number of experts, the term ‘autonomous weapon systems’ is actually a misnomer. Stensson and Jansson argue 
for instance that the concept of ‘autonomy’ is maladaptive as it implies, philosophically, qualities that techn ologies 
cannot have. For them, machines, by definition, cannot be autonomous. Stensson, P. and Jansson, A., ‘Autonomous 
technology: source of confusion: a model for explanation and prediction of conceptual shifts’, Ergonomics, vol. 57, 
no 3 (2014), pp. 455–70. The concept of autonomous systems has also caused complex and contentious debate regarding 
the level at which a system may be deemed truly autonomous. In a report dated 2012 the US Department of Defense’s 
Defense Science Board concluded that defining levels of autonomy was a waste of time and money, and tended to rein-
force fears of unbounded autonomy. The report noted that discussion of levels of autonomy ‘deflects focus from the 
fact that all autonomous systems are joint human-machine cognitive systems … all systems are supervised by humans 
to some degree … There are no fully autonomous weapons systems as there are no fully autonomous sailors, airmen, 
or marines’. US Department of Defense (DOD), Defense Science Board, Task Force Report: Role of Autonomy in DoD 
Systems (DOD: Washington, DC, 2012), pp. 23–24.





3. Situating autonomy: where is autonomy in weapon
systems?

I. Applications of autonomy in weapon systems

Autonomy is a characteristic that can be attached to a large variety of functions in 
weapon systems. These may be sorted into five generic task areas: (a)  mobility, 
(b) health management, (c) interoperability, (d) battlefield intelligence, and (e) use of
force (see table 1).

Mobility includes various types of functions that allow systems to govern and direct 
their own motion within their operating environment. Key applications of autonomy 
for mobility include navigation, take-off and landing, obstacle avoidance, and return 
to base in case of loss of communication. 

The second area, health management, regroups functions that allow systems to 
manage their functioning or survival. One example is power management: when a 
system detects that its power resources are low, it can engage and manage the pro-
cess of recharging or refuelling completely independently. Other possible applications 
include autonomous fault detection and self-repair. 

The third area, interoperability (focusing here on machine autonomy) is concerned 
with the ability of a machine to execute a task in collaboration with other machines 
or humans. Swarming is one notable example of machine-to-machine collaboration 
consisting of making large numbers of simple or low-cost physical robots execute a 
task in concert, which can be done in a centralized or decentralized way. 1 A number 
of experts foresee that developments in swarming will have a fundamental impact on 
future warfare, as it would enable the application of force with greater coordination, 
intelligence, mass and speed. 2 In terms of human-machine collaboration, one key con-
crete application of autonomy is to enable the use of natural language (either speech 
or gesture) for command and control. Voice command and control is already in use in 
some weapon platforms, but so far it is limited to the execution of non-critical tasks. 

The fourth area, battlefield intelligence, refers to on-board functions that allow 
weapon systems to find and analyse data of tactical or strategic relevance on the bat-
tlefield. The data may then serve to guide decision making by either the operators or 
military command. 

The fifth and most critical category, use of force, refers specifically to functions that 
enable weapon systems to search for, detect, identify, track or prioritize and attack 
enemy targets on the battlefield. 

There is growing consensus among CCW delegates and experts that the real con-
cern, be it from a legal, ethical or security standpoint, is when autonomy is applied to 
the last two categories.3 These are sometimes referred to as the ‘critical functions’ in 
weapon systems. In contrast, the functions in the first three categories are usually 
described as ‘operational functions’. Advances in autonomy for operational functions 
are deemed less problematic, at least as far international law is concerned. This does 
not mean that these do not merit attention. Advances in autonomy in the areas of 

1 Tan, T. and Zheng, Z-Y., ‘Research advances in swarm robotics’, Defence Technology, vol. 9, no. 1 (Mar. 2013), 
pp. 18–39.

2 Arquilla, J. and Ronfeldt, R., Swarming and the Future of Conflict (RAND Corporation: Santa Monica, CA, 
2005); and Scharre, P., Robotics on the Battlefield Part II: The Coming Swarm (Centre for a New American Security: 
Washington, DC, Oct. 2014).

3 International Committee of the Red Cross (ICRC), Autonomous Weapon Systems: Technical, Military, Legal and 
Humanitarian Aspects, Expert Meeting Report (ICRC: Geneva, 2014); and United Nations Institute for Disarmament 
Research (UNIDIR), Framing Discussions on the Weaponization of Increasingly Autonomous Technologies, UNIDIR 
Resources no. 1 (UNIDIR: Geneva, 2014).



8   a primer on autonomy

mobility, health management and interoperability could, in fact, improve the offen-
sive potential of weapon systems. The technological developments that are enabling 
advances in autonomy in these functional areas may also serve to improve autonomy 
in the targeting process. This will be illustrated in more detail in section 5, which will 
present how autonomy is created in greater detail. 

II. Autonomy as it applies to use of force

Systems that, once deployed, can independently execute some aspects of target detec-
tion, identification, tracking and attack do not belong to a distant future. In fact, some 
weapon systems with these functions have been used for decades. They include the 
following (see also table 2):

1. Missile and rocket defence systems such as the Goalkeeper close-in weapon systems 
developed by the Netherlands or the Iron Dome counter-rocket artillery and mortar 
systems developed by Israel. These are used for air defence to protect ships or ground 
installations against incoming missiles, rockets, artillery shells, unmanned systems or 
high-speed boats. Such systems use radars that can detect incoming projectiles and 
aircraft, and respond via computer-controlled ‘fire control systems’ to aim and fire 
interceptor missiles or bullets. These weapons have been used since the 1980s and 
have been deployed in at least 30 countries. 

2. Active vehicle protection weapons, such as the Trophy system developed by Israel,
are also air defence systems. They are used on armoured vehicles to protect against 
incoming missiles and rockets. They use fire-control radar to identify and attack 
incoming projectiles. 

3. Anti-personnel sentry weapons, such as the Samsung SGR-A1 developed by the
Republic of Korea, serve to protect specific locations (e.g. sites, borders etc) against 
intruders. They can be either fixed or mobile. The systems in use reportedly require 
human authorization to fire autonomously at a human target. 

4. Smart sensor-fused munitions (such as the Bonus 155 projectile developed by
France and Sweden), guided missiles (such as the Brimstone air-to-ground missile 

Table 1. Generic categorization of autonomous functions in military platforms and systems

General capability areas Autonomous ability Tasks

Mobility Ability for the system to govern and 
direct its motion within its environ-
ment

Navigation
Take-off/landing
Collision avoidance
Follow me
Return to base

Health management Ability for the system to manage its 
functioning and survival

Fault detection
Self-repair
Power management

Interoperability Ability for the system to collaborate 
with other machines or humans

Multi-agent communication 
and coordination (swarming)

Human-machine interaction 
through natural language 
communication

Battlefield intelligence Ability to collect and process data of 
tactical and strategic relevance

Data collection 
Data analysis

Use of force Ability to search for, identify, track or 
select and attack targets

Target detection
Target identification
Target tracking
Target selection
Fire control

Source: SIPRI data set on autonomy in weapon systems.
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developed by the United Kingdom) and loitering munitions (including the Israeli- 
produced Harpy) are ‘smart’ munitions. These include in-built sensors and target 
recognition software that allow them to identify and select targets that correspond 
to pre-programmed target signatures. Loitering munitions feature greater auton-
omy than guided missiles and sensor-fused munitions as they have a high degree of 
freedom in terms of mobility. They can ‘loiter’ over a designated area during a pre-
determined period. Some may also have the ability to operate as a swarm. 

5. Encapsulated torpedoes and mines, such as the MK-60 CAPTOR developed by the
United States, work on the same principles as guided missiles but operate underwater. 
They use acoustic sensors and computer-fire control systems that allow them to rec-
ognize the signature of submarines. 

Whether these systems can be described as ‘autonomous’ is a matter of perspective 
and depends on which approach to the concept of autonomy is used. From the point of 
view of the human-machine command-and-control relationship they are, or could be 
labelled, ‘semi-autonomous’ (some operate with human involvement or under direct 
human supervision). However, when assessing the decision-making capacity of the 
systems, the level of autonomy is more debatable. The actual capabilities and uses of 
these systems will be presented in greater detail in a separate working paper. 

Table 2. Examples of systems that select and engage targets without direct human involvement

Types of system Examples (country of development)

Missile and rocket defence systems Goalkeeper close-in weapon system (Netherlands)
Iron Dome (Israel)
Kashtan close-in weapon system (Russia)

Active vehicle protection weapons AMAP-ADS (Germany)
LEDS-150 (South Africa)
Trophy (Israel)

Anti-personnel sentry weapons Samsung SGR-A1 (Republic of Korea)
Guardium (Israel)
MDARS-E (USA)

Sensor-fused munitions Bonus 155 mm projectile (France/Sweden)
SMArt 155 mm projectile (Germany)

Guided missiles Air launched: Brimstone air-to-ground missile (UK)
Cruise missile: BrahMos (India/Russia)
Anti-ship missile: RBS 15 (Sweden)

Loitering munitions Harpy (Israel)
Low-Cost Autonomous Attack System (USA)
TARES (Germany)

Encapsulated torpedoes and mines MK-60 CAPTOR (USA)
PMK-2 encapsulated torpedo mine (Russia)
Sea Urchin (UK)

Source: SIPRI data set on autonomy in weapon systems.





4. Unravelling the machinery
In order to understand the current state and future development of autonomy in 
weapon systems and military and civilian systems more generally, it is useful to 
describe and explain some of the technical foundations of autonomy: notably how it 
works and what the key enabling technologies are.

I. How does autonomy work?

From a basic technical standpoint, ‘autonomy is about transforming data from the 
environment into purposeful plans and actions’.1 Regardless of the nature of the 
human-machine relationship, the degree of sophistication of the system or the type of 
task that is executed, autonomy (in a physical system) is always enabled by the integra-
tion of the same three fundamental capabilities: sense, decide and act.2 These capabil-
ities will be presented in turn. 

Sense 

To complete a task autonomously a system needs to be able to perceive the environ-
ment in which it operates. For that, it requires sensors to collect data (the ‘sense’ part 
of perception) and a computer which uses a dedicated program—a sensing software—
that can fuse and interpret the data (the ‘think’ part of perception).3 The way sens-
ing software works can vary significantly depending on the type of sensory data and 
the end use of the processed data. Many types of sensing software, notably computer 
vision software used for target detection, rely on pattern recognition: the software 
looks for predefined patterns in the raw data and compares them to example patterns 
stored in a computer memory, either on-board or off-board the system. It is worth 
emphasizing that computers identify patterns, such as for image or speech recogni-
tion, in a fundamentally different way from the way humans do. They use mathemat-
ical methods to find relationships in the sensory data. This means that when comput-
ers make errors, they are very different from those that a human would make. Recent 
studies have shown that state-of-the-art computer vision systems that can showcase 
human-competitive results on many pattern recognition tasks can easily be fooled. 
One study illustrated that changing an image originally correctly classified (e.g. a lion) 
in a way that is imperceptible to the human eye can cause the computer vision soft-
ware to label the image as something entirely different (e.g. mislabelling a lion as a 
library).4 Another study demonstrated that it is easy to produce images that are com-
pletely unrecognizable to humans but that computer vision software believes to be a 
recognizable object with over 99 per cent confidence.5 

1 Mindell, D., Our Robots, Ourselves, Robotics and the Myths of Autonomy (Viking: New York, NY, 2015), p. 12.
2 US Department of Defense (DOD), Office of Technical Intelligence, Office of the Assistant Secretary of Defense 

for Research and Engineering, Technical Assessment: Autonomy (DOD: Washington, DC, Feb. 2015), p. 2.  
3 Sensors may also be turned inwards to make the system capable of self-assessment, e.g. monitoring power 

resources or the state of physical components. 
4 Szegedy, C. et al., ‘Intriguing properties of neural networks’, arXiv:1312.6199 (2013), arxiv.org, <https://arxiv.org/

pdf/1312.6199v4.pdf>.
5 Nguyen, A., Yosinski, J. and Clune J., ‘Deep neural networks are easily fooled: high prediction confidence for 

unrecognizable objects’, Institute of Electrical and Electronics Engineers (IEEE), Computer Vision and Pattern 
Recognition 2015.
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Decide 

The data that has been processed by the sensing software serves then as input for the 
decision-making process, which is assured by the control system. The way the con-
trol system determines the course of action towards the task-specific goal can differ 
greatly from one system to another. Drawing upon Russell’s and Norvig’s classifica-
tion of intelligent agents, two generic categories of control system (which themselves 
can be further divided into two types) can be identified: (a) reflex-based control sys-
tems (simple or model-based), and (b) optimization-based control systems (goal-based 
or utility based). 6 The decision–making processes presented by these categories differ 
radically from each other.

Reflex-based control systems

Reflex-based control systems can be divided into two subtypes: simple reflex- control 
systems and model-based reflex-control systems. ‘Simple’ reflex systems follow a 
strict sense-act modality. They merely consist of a set of condition-action rules (also 
known as ‘if-then rules’) that explicitly prescribe how the system should react to a 
given sensory input. To take the example of a landmine, these rules would be: if the 
weight exerted on the mine is between X and Y kilogrammes, then detonate. These 
systems succeed only in environments that are fully observable through sensors. 

Model-based reflex-control systems are slightly more complex in their design as 
they include a ‘model of the world’ meaning a knowledge base that represents, in math-
ematical terms, how the world works: how it evolves independently of the system and 
how the system’s actions affect it. The additional information provided by the model 
helps improve performance and reliability as it aids the control system to keep track 
of its percept history and parts of the environment it cannot observe though its sen-
sors.7 For instance, for an autonomous vacuum cleaner this information could simply 
be a map of the surface that has to be vacuumed. Like simple reflex control systems, 
model-based control systems follow a fixed set of rules and their decision making is 
implemented in some form of direct mapping from situation to action. 

Optimization-based control systems

Optimization-based control systems, on the other hand, can govern their own actions 
by manipulating data structures representing what Weiss calls their ‘beliefs’, ‘desires’ 
and ‘intentions’.8 They combine (a) a model of the world (belief about how the world 
works and the reactions to the system’s actions), (b) a value function that provides 
information about the desired goal (desire), and (c) a set of potential rules that help 
the system to search and plan how to achieve the goal (intention).9 To make a decision, 
optimization-based control systems weigh the consequences of possible actions and 
measure whether and to what extent they will serve the achievement of the goal. One 
concrete example would be the homing function in a beyond-visual-range air-to-air 

6 Russell and Norvig define ‘agents’ as ‘anything that can be viewed as perceiving its environment through sensors 
and acting upon that environment through actuators’; an agent can be a human, a robot or software. A fifth sub-
type, a ‘learning agent’, could also be listed here but is discussed separately in the subsection on machine learning. 
Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach, 3rd edn (Pearson Education: Harlow, 2014), 
p. 35, p. 49.

7 Russell and Norvig describe reflex agents that include a model of the world as model-based reflex agents. Those 
that do not have a model are referred to as a ‘simple reflex agent’. Russell and Norvig (note 6).

8 Weiss, G., Multiagent Systems, 2nd edn (MIT Press: Cambridge, MA, 2013), pp. 54–55.
9 Control systems that only include goal information in their value function are counted as ‘goal-based systems’ 

under Russell’s and Norvig’s classification. Control systems that include information about utility of the action out-
comes in their value function are called ‘utility-based agents’. These agents can vector performance and efficiency 
factors to maximize their course of action. Utility-based agents are more intelligent and efficient than goal-based 
agents. They are preferable when meeting the goal cannot be achieved in a single action and the agent is required to 
plan a series of sequential actions. Russell and Norvig (note 6).
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missile (e.g. the Meteor missile developed by the European producer MBDA). The 
desired goal of the missile is to attack a predetermined target. Combining input from 
sensors, information from the model of the world and the rules included in its utility 
function, the missile’s control system can find the quickest and most energy-efficient 
route to approach the target. It can then track the target until it has an opportunity to 
attack it. 

Optimization-based control systems feature a level of deliberative intelligence or 
self-governance that reflex agents do not have. They do not simply go through a series 
of pre-mapped actions; they can reason about the possible consequences of actions 
and then act accordingly. Their main advantage is flexibility. They can handle sce-
narios that could not be foreseen in the design stage. This does not necessarily mean, 
however, that their behaviour is not predictable or that the systems are capable of free 
will. Control systems do only what they are programmed to do, regardless of the com-
plexity of their programming.10 

It should be mentioned that ‘randomized’ algorithms can be used in both reflex-
based control systems and optimization-based control systems. Randomized algo-
rithms are ‘non-deterministic’ in that they allow systems to randomly pick a solution 
to solve a problem. In the context of a reflex-based agent, the use of randomized algo-
rithms allows the agent to escape from an infinite loop (i.e. the situation when an 
agent endlessly repeats an action to meet a goal but the goal cannot be achieved by that 
action) by randomly picking between two predetermined alternatives. In the case of 
a vacuum cleaner this could be randomly turning left or right when confronted by an 
obstacle. In optimization-based control, the use of randomized algorithms is useful to 
prevent a system from having to search all possible combinations of actions. For some 
processes the use of random algorithms provides the simplest or fastest way to achieve 
a result. The use of randomized algorithms provides such systems with the poten-
tial to generate different behaviour under the same input condition. In other words, it 
introduces some unpredictability in the behaviour of the system. That is why the use 
of non-deterministic algorithms is rare in safety-critical systems.

Act

The decisions made by the control systems are then exerted in the real world through 
computational or physical means.11 In the cyber-realm, for instance, this could be a 
software program that would implement a specific action such as blocking a malicious 
code. When discussing robotic platforms, the means through which the systems inter-
act with the environment are commonly referred to as ‘end-effectors’ and ‘actuators’. 
End-effectors are the physical devices that assert physical force on the environment: 
wheels, legs and wings for locomotion, as well as grippers and, of course, weapons. 
Actuators are the ‘muscles’ that enable the end-effectors to exert force, and include 
things such as electric motors and hydraulic or pneumatic cylinders. It should be noted 
that actuators and end-effectors might in some cases be coupled with sensors that will 
provide feedback information to the control systems concerning the task execution. 

In summary, autonomy derives, from a technical standpoint, from the ability of a 
system to sense and act upon an environment and direct its activity towards achiev-
ing a given goal. Figure 1 represents in a simple fashion how these different capabili-
ties interact with each other within a system that uses an optimization-based control 
system.

10 Righetti, L., ‘Emerging technology and future autonomous systems: speaker’s summary’, Autonomous Weapon 
Systems: Implication of Increasing Autonomy in the Critical Functions of Weapons, Expert Meeting, Versoix, 
Switzerland, 15–16 Mar. 2016, p. 39.

11 Russell and Norvig (note 6), pp. 988–90.
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II. What are the underlying technologies?

Anatomy of autonomy: underlying technology architecture

As implied by the previous description, autonomy is at a fundamental level always 
enabled by some type of underlying technology: 

1. Sensors that allow the system to gather data about the world;
2. A suite of computer hardware and software that allows the system to interpret

data from the sensor and transform it into plans and actions. The three most impor-
tant technologies in this regard are computer chips, sensing software and control soft-
ware that together form the ‘brain’ of the system; 

3. Communication technology and human-machine interfaces that allow the system 
to interact with other agents, whether they be machines or humans; and
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Figure 1. Anatomy of autonomy
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4. Actuators and end-effectors that allow the system to execute the actions in its
operating environment. 

These different components form the underlying architecture of autonomy. The 
actual characteristics of these underlying technologies will be different depending on 
the nature of the task and the operating environment. It should also be noted that 
technologies may be integrated within a single machine—which could be described as 
‘self-contained autonomy’—or distributed across a network of machines—which could 
be described as ‘distributed autonomy’. 

Autonomy: a ‘software endeavour’

Advances in autonomy in weapon systems are dependent upon technological progress 
in multiple areas. Advances in sensor technologies are certainly crucial as such tech-
nologies determine the accuracy of the data that systems can collect on their operat-
ing environments. Likewise, advances in computer-processing technologies play an 
important role as they determine the speed at which the software part of a system can 
‘think’ as well as the volume of data that it can efficiently handle. The design of the 
actuators and end-effectors will also affect the hardiness, endurance and cost of the 
systems. 

The technologies that are deemed the most critical to autonomy, however, are the 
software elements. As a 2012 report by the Defense Science Board of the US Depart-
ment of Defense pointed out, autonomy is primarily a ‘software endeavour’. 12 It is the 
complexity of sensing software and control software that actually determines the 
level of autonomy of a system. In other words, autonomy is a very ‘diffuse’ technology 
that does not easily lend itself to being tracked or measured because it fundamentally 
depends on the ingenuity of human programmers to find a way to break down a prob-
lem into mathematical rules and instructions that the computer will be able to handle. 
That being said, the state of the art is relatively well known. The following section 
describes what is currently feasible for humans to achieve in programming within the 
bounds of contemporary knowledge. 

12 Department of Defense (DOD), Defense Science Board, Task Force Report: Role of Autonomy in DoD Systems 
(DOD: Washington, DC, 2012), p. 22. 





5. Creating autonomy
This section takes stock of the extent to which autonomy remains an engineering chal-
lenge. It starts by discussing the variables that make autonomy difficult from a pro-
gramming perspective. Next, it presents what is feasible with today’s technology and, 
lastly, it discusses the extent to which the highly published progress made in machine 
learning could fuel significant advances in autonomy in weapon systems. 

I. How difficult is it to achieve autonomy?

Achieving autonomy is, by definition, not actually that difficult. The extent to which 
it is feasible with today’s technology depends on two interrelated variables: (a) the 
complexity of the task, and (b) the complexity of the environment. 

The complexity of the task

The complexity of a task primarily has to do with the extent to which it is possible 
to model it mathematically and does not reflect how difficult its execution might be 
according to human standards. A famous paradox in the artificial intelligence and 
robotics community—known as ‘Moravec’s paradox’—is that ‘hard problems are easy 
and easy problems are hard’. According to Moravec, ‘it is comparatively easy to make 
computers exhibit adult level performance on intelligence tests or playing checkers, 
and difficult or impossible to give them the skills of a one-year-old when it comes to 
perception and mobility’.1 

There are several variables that contribute to making a task complex from the pro-
grammers’ point of view. The first variable is precision: how well defined is the task? 
Does the task follow rules or a concrete logic? The more abstract or ill-defined the 
task specifications, the harder it is to formulate in terms of a mathematical problem 
and a solution. The second factor is that of tangibility: can the expected outcome be 
quantified? Task executions that require qualitative judgement are often problematic 
because the outcome cannot be assessed in objective terms. It is debatable for instance 
whether the principles that govern the use of force in international humanitarian 
law—notably proportionality and precaution in attacks—could, or should, ever be rep-
resented in terms that a computer could reason with. A third variable is dimension-
ality: can the task be executed in a single action or does it require sequential decisions 
and actions? How many possibilities are the systems facing to execute each action? The 
combined answers to these two questions determine the number of possibilities that 
the systems might have to process to take a decision. The more possibilities that exist, 
the more advanced the programming needs to be and the more computing power is 
necessary to engineer optimal solutions to a problem. A fourth variable is interaction: 
does execution of the task require interaction with other autonomous agents? What is 
the nature of the interaction: are agents competing, collaborating or simply commu-
nicating? Modelling interaction with other agents, particularly humans, in either a 
competitive or collaborative context is fundamentally difficult as human behaviour is 
often unpredictable.

1 Pinker. S., The Language Instinct (Harper Perennial: New York, NY, 2007), pp. 190–91; and Moravec, H., Mind 
Children (Harvard University Press: Cambridge, MA, 1988).
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The complexity of the environment 

The complexity of the environment derives from several elements. Is the environ-
ment fully observable or partially observable through sensors? Is it a known or well- 
understood environment? Is it structured or unstructured? Is it cluttered or unclut-
tered? Is it static or dynamic? Is it a determinist or stochastic environment (i.e. does 
the system’s action always produce the same effects on it?) Is it an adversarial environ-
ment where actors may actively seek to defeat the system? All these variables affect 
the extent to which the environment is predictable and can be modelled in advance 
either explicitly (like a map showing what the environment looks like precisely) or 
implicitly (rules about how it works, e.g. rules of the road). The less predictable the 
environment, the harder it is to model and therefore the harder it is to create autono-
mous capabilities within systems, at least those that are effective and reliable.

The case of navigational autonomy in robotic platforms provides a good illustra-
tion of the challenges posed by varying levels of complexity in different environments. 
Navigational autonomy is comparatively easy to create for systems operating in the air 
or underwater for the simple reason that generally these two domains are uncluttered: 
they feature a limited number of possible obstacles. In addition, the laws of physics 
in these two domains are well understood. Hence, they can be easily represented in 
mathematical terms. The land domain, on the other hand, offers greater complex-
ity in many regards: the structure of the terrain may vary greatly, the systems may 
face many different types of obstacles and have to interact with other autonomous 
agents—either other machines or humans—whose behaviour might be unpredictable. 
Engineers know very well how to make self-driving vehicles that can operate within 
constrained and structured environments (within a factory or on the tarmac of an 
airport) or unpopulated or sparsely populated semi-structured environments (such as 
a motorway) because these can be easily explicitly mapped or implicitly modelled in 
advance. Making self-driving vehicles capable of operating in highly diverse human 
environments, such as a city centre, is much more challenging because it is difficult—
if not impossible—for a programmer to develop a model that will capture all possible 
combinations of events. By definition, a model is a simplified version of the world; 
there is always a risk of a corner case (i.e. a problem or situation that has not been rep-
resented and planned for in the model of the world).

II. What is feasible with today’s technology?

Presenting the current state of autonomy in a single description is difficult because 
the description depends upon the types of tasks and environments that are of interest. 
This subsection therefore focuses on what is technically possible in the five applica-
tion areas of autonomy identified in table 1 (section 3): mobility, health management, 
interoperability, battlefield intelligence, and use of force. 

Mobility

As already explained in the previous subsection, the extent to which developing auton-
omous navigation capabilities is feasible using current technology depends upon the 
complexity of the environment.

Air domain

The air domain is the environment where the interest for autonomy has been the 
strongest and consequently where technological progress has been the greatest. 
Engineers have created unmanned air systems—also known as unmanned aerial 
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vehicles (UAVs)—that can take off and land autonomously; fly to predetermined des-
tinations using the Global Positioning System (GPS) and waypoint navigation; com-
plete emergency landings; and return to base upon loss of communication. The only 
contexts where the development of autonomous flight capabilities remain potentially 
challenging (but not impossible) are in low-lying and unknown environments (due 
to the presence of obstacles) and contested airspace (where the use of a GPS guid-
ance system is insufficient or impossible due to jamming). Thus, the development of 
vision-based guidance for UAVs has been the focus of important research in recent 
years. Vision-based guidance systems are image-processing systems that allow the 
systems to build representations of their surroundings and thereby identify obsta-
cles. However, at present this technology is usually limited to a ‘visualization’ of geo-
metry meaning that UAVs can only detect (and avoid) an obstacle’s geometry. UAVs, 
for example, do not have the functional semantic understanding to distinguish a door 
from a wall; they would view both objects simply as flat planes.

Maritime domain

The maritime domain also presents relatively few difficulties for the development 
of autonomous navigation capabilities since it rarely features obstacles. Current 
unmanned surface systems are mainly operated by remote control, although some 
models are capable of navigating and executing preprogrammed manoeuvres autono-
mously using GPS and waypoint navigation sensor-based obstacle avoidance systems. 
Unmanned underwater systems that can navigate autonomously have existed for dec-
ades. Some of them can even operate for very long periods (several weeks or months 
at a time). 

Land domain

For the reasons given earlier, the development of autonomous navigation capabilities 
in the land domain remains a major scientific challenge as far as the development of 
military systems is concerned. 

Engineers have not yet designed robots or vehicles with sufficient perception and 
decision-making capabilities to respond effectively on the battlefield where environ-
mental conditions might be unknown, unstructured, dynamic and potentially adver-
sarial. 2 That is why current mobile ground robots developed for the military and secu-
rity market are nearly all remotely operated.3 Military unmanned ground vehicles 
capable of navigational autonomy, such as Israel’s Guardium system, can only be used 
for operations such as border surveillance and control where the area is known in 
advance and not subject to major changes. 

Health management

This subsection focuses on three specific applications of health management that have 
decreasing levels of technological maturity: power management, fault detection and 
self-repair. 

Power management 

Progress on the development of processes to render systems capable of managing 
their power resources is now fairly advanced. It is possible to develop ground, land 
and air systems that are capable of managing the refuelling or recharging procedure 

2 US Department of Defense (DOD), Defense Science Board, Report of the Defense Science Board Summer Study on 
Autonomy (DOD: Washington, DC, 2016), p. 13.

3 Pomerleau, M., ‘Work shifts down on driverless military convoy’, Defense Systems, 31 Mar. 2016, <https://defense
systems.com/articles/2016/03/31/bob-work-autonomous-ground-vehicles-unlikely-soon.aspx>.
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entirely—so long as the operational environment permits it. Cutting-edge capability in 
this area is exemplified by the X-47 B, a combat UAV prototype capable of autonomous 
aerial refuelling.4 

Fault detection

Internal fault detection and identification is reportedly not a focus area in the devel-
opment of robotics and unmanned vehicles but the technology exists. 5 The state of 
the art for fault detection is exemplified by the NASA (National Aeronautics and 
Space Administration) Deep Space One probe which used model-based detection and 
recovery to detect errors in software execution as well as malfunctions or damage to 
hardware.6 

Self-repair

Self-repair requires both the ability to self-modify and the availability of new parts 
or resources to fix broken parts. Most existing physical systems lack these proper-
ties. Modular robotics is one area of robotics research that is experimenting with such 
capability. Modular robots consist of identical robotic modules that can autonomously 
and dynamically change their aggregate geometric structure to suit different loco-
motion, manipulation and sensing tasks. They can self-repair by detecting the failure 
of a module, ejecting the bad module and replacing it with one of the extra modules.7

Interoperability

Machine-machine teaming/swarming

Machine-machine teaming/swarming has not yet reached the point where it could 
be turned into a marketable application, be it in the civilian or the military sector 
(although it is foreseen for the coming years by experts).8 However, the fundamen-
tals exist; engineers know how to make large groups of robots execute simple tasks 
(inspection of infrastructures, surveillance of borders etc) collaboratively in the air, 
under the sea or on the ground. Similar to autonomous navigation, the main technical 
difficulties derive from the nature of the operating environment. One practical chal-
lenge in that regard is the requirement for a reliable communication infrastructure.9 
Swarm operations require a reliable communications backbone, which can be difficult 
to maintain (and expensive to run) in remote or communication-denied areas.

4 ‘Fueled in flight: X-47 B first to complete autonomous aerial refuelling’, Navair News, 22 Apr. 2015, <http://www.
navair.navy.mil/index.cfm?fuseaction=home.NAVAIRNewsStory&id=5880>.

5 Department of Defense (DOD), Defense Science Board, Task Force Report: Role of Autonomy in DoD Systems 
(DOD: Washington, DC, 2012). 

6 Bernard, D. et al., ‘Autonomy and software technology on NASA’s Deep Space One’, IEEE Intelligent Systems, 
vol. 10 (May/June 1999).

7 Fitch, R., Rus, D. and Vona, M., ‘A basis for self-repair robots, using reconfiguring crystal module’, Institute of 
Electrical and Electronics Engineers (IEEE)/Robotics Society of Japan (RSJ) International Conference on Intelligent 
Robots and Systems 2000 (IROS 2000), Takamatsu, Japan, 30 Oct.–5 Nov. 2000, <https://groups.csail.mit.edu/drl/
wiki/images/f/f9/Fitch_Rus_Vona_2000_A_Basis_for_Self-Repair_Robots_Using_Self-Reconfiguring_Crystal_
Modules.pdf>.

8 Near-term applications of swarms in the military domain include deployment of micro-drones for intelligence, 
surveillance and reconnaissance (ISR) missions in cluttered environments, and swarms of unmanned systems for 
vehicle protection and anti-access and area denial. Arquilla, J. and Ronfeldt, R., Swarming and the Future of Conflict 
(RAND Corporation: Santa Monica, CA, 2005); Scharre, P., Robotics on the Battlefield Part II: The Coming Swarm 
(Centre for a New American Security: Washington, DC, Oct. 2014); Golson, J., ‘The Navy’s developing little autono-
mous boats to defend its ships’, Wired, 10 June 2014; and ‘US military’s new swarm of mini drones’, Defense News, 
17 May 2015.

9 Tan, T. and Zheng, Z-Y., ‘Research advances in swarm robotics’, Defence Technology, vol. 9, no. 1 (Mar. 2013), 
pp. 18–39.
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Human-machine teaming

The ultimate model of human-machine teaming for many military planners would 
be a situation where operators could describe and give directions—before and dur-
ing operations—using natural language, and where robots or autonomous systems 
could report on their actions or ask for additional input or assistance when they met 
an unexpected situation.10 This model is not yet achievable with current tech nology. 
Speech-interface technology has developed enormously in recent years (notably 
thanks to the standardization of voice-commanded digital assistants in smart phones), 
but it still falls short of what would be expected for a peer-to-peer human-machine 
communication.11 State-of-the-art speech interfaces are steadily improving at speech 
recognition (recognizing words being said) but they still have major difficulties with 
understanding speech (recognizing what is being discussed).12 For now, they can only 
handle simple queries and the fault rate remains fairly high.13 The technology is yet 
to reach the point where systems can (a) comprehend complex spoken phrases, and 
(b) maintain an understanding of what is being discussed at an abstract level. These
are two fundamental requirements for effective communication with humans.

Battlefield intelligence

Existing military systems are not yet capable of collecting and processing intelligence 
information independently. Surveillance UAVs have no ability to analyse information 
on-board; all the data that is captured must be monitored and analysed by human 
analysts off-board.14 There is great interest within the military for developing systems 
capable of pre-process intelligence information—that is, the identification of situations 
of interest such as suspect human behaviour and the communication of that infor-
mation to human analysts for disambiguation.15 Arguably, state-of-the-art computer 
vision algorithms are sufficiently sophisticated to achieve this.16 

Another development in autonomy worth noting (although it does not take place 
on-board weapon systems) is the use of big data analytics for pattern recognition 
in intelligence data. One recent illustration of this capability is the alleged use of 
machine-learning algorithms by the USA to search the Global System for Mobile 
(GSM) communication metadata of 55 million mobile phone users in Pakistan. The 
algorithm was trained to track down couriers carrying messages between Al-Qaeda 
members.17 

10 The development of human-machine communication is also seen as a way to increase human trust in autono-
mous systems and therefore facilitate their adoption by military personnel. US Department of Defense (DOD), Defense 
Science Board (note 2), p. 15.

11 Voice recognition for command-and-control can be found in the most recent generations of combat aircraft: 
the F-16 Vista and the F-35 Lightning (Lockheed Martin), the JAS 39 Gripen (Saab), the Mirage (Dassault) and the 
Eurofighter Typhoon (Airbus). However, it is only used to operate non-critical functions. Schutte, J., ‘Researchers fine-
tune F-35 pilot-aircraft speech system’, Air Force Link, 15 Oct. 2007, <https://web.archive.org/web/20071020030310/
http://www.af.mil/news/story.asp?id=123071861>; and Englund, C., ‘Speech recognition in the JAS 39 Gripen aircraft: 
adaptation to speech at different G-loads’, Master’s Thesis in Speech Technology, Royal Institute of Technology, 
Stockholm, 11 Mar. 2004, <http://www.speech.kth.se/prod/publications/files/1664.pdf>.

12 Knight, W., ‘10 breakthrough technologies 2016: conversational interfaces’, MIT Technology Review (2016); and 
Tuttle, T., ‘The future of voice: what’s next after Siri, Alexa and Ok Google’, Recode, 27 Oct. 2015, <http://www.recode.
net/2015/10/27/11620032/the-future-of-voice-whats-next-after-siri-alexa-and-ok-google>.

13 Guo, J., ‘Google new artificial intelligence can’t understand these sentences. Can you?’, Washington Post, 18 May
 2016, <https://www.washingtonpost.com/news/wonk/wp/2016/05/18/googles-new-artificial-intelligence-cant-
under stand-these-sentences-can-you/>.

14 Tucker, P., ‘Robots won’t be taking these military jobs anytime soon’, Defense One, 22 June 2015, <http://www.
defenseone.com/technology/2015/06/robots-wont-be-taking-these-military-jobs-anytime-soon/116017/>.

15 The rationale behind military interest is threefold: reducing manpower burden, reducing analysis time and 
reducing the size of the communication broadband. 

16 US Department of Defense (DOD), Defense Science Board (note 5); and Scheidt, D., ‘Organic persistent intelli-
gence, surveillance and reconnaissance’, John Hopkins APL Technical Digest, vol. 31, no. 2 (2012).

17 Robbin, M., ‘Has a rampaging AI algorithm really killed thousands in Pakistan?’, The Guardian, 18 Feb. 2016.
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Use of force 

As previously discussed there are a number of existing weapon systems that, once 
deployed, can detect, select, track and engage targets without human intervention. 
The capabilities of automated target recognition software in terms of perception and 
decision making are rather limited. They can only recognize large and well-defined 
objects (like tanks or enemy radars), and require favourable weather conditions and 
uncluttered environments.18 Their decision-making process is also highly constrained 
and they can only fire upon target types that have been predetermined.19 

The capabilities of existing weapon systems are not, however, representative of what 
is possible in the field of pattern recognition, in particular, for image identification and 
classification. The field of computer vision and pattern recognition has made substan-
tial strides in recent years notably due to the improvement of machine- learning tech-
niques (see below). 20 It is possible to develop systems that show human-competitive 
results in terms of face and object recognition. In some cases such systems may even 
outperform humans (e.g. for facial recognition). However, it should be noted that these 
systems currently perform better in the cloud than in the physical world. Robotic sys-
tems need to be capable of continuous perception, which is a level of performance 
significantly beyond pattern recognition in images or video from the Internet. The 
robotics industry has only just begun to exploit the potential of the latest advances in 
machine learning to improve the perception capabilities of robots. Moreover, machine 
learning requires access to huge volumes of data, which poses the problem of data 
availability.

The development of neural network vision technology, which uses processes similar 
to those of the human brain, may provide further advances in this field. However, it 
is debatable whether this technology is capable of powering a next-generation target 
recognition system at this stage, although a number of ongoing research and develop-
ment projects are pursuing that objective.21

 Although computer vision technology has made great progress in biometrics and 
object recognition, it still struggles to infer abstract meaning from images, video- 
footage or real-life situations.22 Cutting-edge computer vision systems can recognize 
some simple human actions such as walking, running and hand waving, but they are 
unable to determine the intentions behind these actions (e.g. why a person might be 
running). Making computers capable of understanding complex actions and goal- 
oriented activity remains a fundamental research problem. In other words, it remains 
challenging using the currently available technology to develop autonomous target 
recognition systems able to detect human enemy targets based on the behaviour or 
actions of those targets. 

18 Ratches, J., ‘Review of current target recognition systems’, Optical Engineering, vol. 50, no. 5 (2011), pp. 1–7; 
and Roff, H., ‘Sensor-fused munitions, missiles and loitering munitions: speaker’s summary’, Autonomous Weapon 
Systems: Implication of Increasing Autonomy in the Critical Functions of Weapons, Expert Meeting, Versoix, 
Switzerland, 15–16 Mar. 2016, pp. 33–34.

19 The performance and capabilities of existing weapons that have some level of autonomy in their critical functions 
will be further analysed in a separate working paper. 

20 Gershgorn, D., ‘See the difference one year makes in artificial intelligence research’, Popular Science, 31 May 2016.
21 A small number of large defence companies, including BAE Systems, Leidos and Lockheed Martin, are report-

edly conducting research and development efforts in this area. Warwick, G. and DiMascio, J., ‘Machine learning key 
to automatic target recognition’, Aviation Week & Space Technology, 26 May 2016.

22 Karpathy, A., ‘The state of computer vision and AI: we are really, really far away’, Andrej Karpathy Blog, 22 Oct. 
2012, <http://karpathy.github.io/2012/10/22/state-of-computer-vision/>.
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Conclusion

A conclusion that can be drawn from this brief review is the importance of perception. 
It is the lack of perceptual intelligence that is impeding the advance of autonomy in 
some of the most critical applications areas of autonomy in weapon systems, namely 
mobility, interoperability, use of force and battlefield intelligence. For a number of 
experts, the solution to designing machines capable of advanced situational under-
standing lies in the current progress of machine learning. This is the topic of the final 
subsection. 

III. How important is machine learning to future advances of autonomy
in weapon systems?

Handcraft programming vs machine learning

Currently, most software is handcrafted, meaning that human programmers are 
entirely responsible for defining the problems to be solved by the software and the 
way in which it solves those problems. This requires a great deal of research on how 
the world works. Engineers developing autonomous systems often cooperate with sci-
entists from other scientific fields, notably the natural sciences (e.g. neurosciences and 
physics) and the social sciences (e.g. psychology, linguistics and sociology), in order to 
develop the model and rules that will govern the behaviour of the systems, whether 
for perception or decision making. 

Handcraft programming has limitations, particularly when tasks and operating 
environments are too complex for a human to model them completely.23 This is one 
of the reasons why in many areas of artificial intelligence and robotics research—two 
disciplines that are directly involved in the development of autonomy—programmers 
now rely extensively on machine learning to develop their systems.24 

Machine learning is an approach to software development which consists of build-
ing a system that can learn and then teaching it what to do using a variety of methods 
(see box 1). This is a complex and data-heavy undertaking. Machines learn by abstract-
ing statistical relationships in data. To be taught, they need to be provided with large 
amounts of training data (real-world examples) and rules about the data relationship. 
The main advantage of machine learning compared with traditional programming is 
that humans do not have to explicitly define the problem or the solution, instead the 
machine is designed to improve its knowledge through experience. 

Machine learning: opportunities and challenges 

Machine learning has been around for decades but has made great strides in recent 
years, notably due to improvements in computer power and developments in deep 
learning—a specific technique based on neural networks, which draws heavily on 
knowledge of the human brain, statistics, and applied maths (see box 2).25 These recent 
advances have created both important opportunities and challenges for the develop-
ment of autonomy in weapon systems. 

As previously discussed, recent advances in machine learning have proved to be very 
useful for machine perception. They allow the programmer to design sensing software 

23 Kester, L., ‘Mapping autonomy’, Presentation at the 2016 CCW Informal Meeting of Experts on Lethal 
Autonomous Weapon Systems, Geneva, 11–15 Apr. 2016. 

24 Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach, 3rd edn (Pearson Education: Harlow, 2014), 
p. 56.

25 Goodfellow, I., Bengio, Y. and Courville, A., Deep Learning, (MIT Press: Cambridge, MA, Forthcoming); and
Murnane, K., ‘What is deep learning and how is it useful?’, Forbes, 1 Apr. 2016.
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that features remarkable capabilities in terms of pattern recognition (whether objects, 
faces or radio signals).26 They create improvement opportunities in all application 
areas of autonomy in weapon systems, from target recognition to navigation. 

Machine learning also poses a number of practical challenges, particularly with 
regard to predictability. Machine learning systems, particularly those that run on 
deep neural networks, could be said to operate like a ‘black box’ system: the input and 
output of the system are observable but the process leading from input to output is 
unknown or difficult to understand. It is particularly difficult for humans to under-
stand what such systems have learned and hence how they might react to input data 
that is very different from that used during the training phase.27 Likewise, unless the 
system’s learning algorithm is frozen at the end of the training phase, once deployed, 
it might learn something it was not intended to learn or do something that humans do 
not want it to do.28 

These are some of the reasons why the use of machine learning in the context of 
weapon systems has been limited to experimental research. The introduction of 
machine-learning capabilities in deployed systems is unlikely in the near future unless 
the engineer community manages to solve some of the methodological problems that 
learning systems, particularly those that can learn online, pose to existing methods of 
verification (i.e. methods that are used to ensure that a system conforms with a regu-
lation, requirement, specification or imposed condition). 

26 Gershgorn (note 20).
27 Postma, E., ‘Deep learning: the third neural network wave’, Data Science Center Tilburg Blog, Feb. 2016, 

<https://www.tilburguniversity.edu/research/institutes-and-research-groups/data-science-center/ blogs/
data-science-blog-eric-postma/>.

28 Roff, H. and Singer P. W., ‘The next president will decide the fate of killer robots—and the future of war’, Wired, 
6 Sep. 2016.

Box 1. Machine-learning methods

According to Nilsson, ‘a machine learns whenever it changes its structure, program, or 
data (based on its inputs or in response to external information) in such a manner that its 
expected future performance improves. Some of these changes, such as the addition of a 
record to a database, fall comfortably within the province of other disciplines and are not 
necessarily better understood for being called learning. But, for example, when the perfor-
mance of a speech-recognition machine improves after hearing several samples of a per-
son’s speech, we feel quite justified in that case to say that the machine has learned’.

A machine can learn on the job (online learning) or during a training phase (offline) with 
a wide spectrum of methods that can be sorted into three generic categories: reinforcement 
learning, supervised learning and unsupervised learning. 

- Reinforcement learning: the machine receives some reward for its action. It obtains
more rewards when the outcome is closer to the desired outcome. This motivates it to find 
the most suitable solution. The desired outcome is never presented to the machine. 

- Supervised learning: the machine learns by comparing example inputs with desired
outputs. The data is labelled with the correct answer. Examples include systems that learn 
image recognition by scanning databases with tagged images.

- Unsupervised learning: the machine is only presented with raw data and it must find
patterns in the data itself. It is the most difficult method of learning and the one that cur-
rently shows the least mature results. 

- Semi-supervised learning: the machine is presented with both labelled and unlabelled
examples of data. 

In practice, the distinctions between the categories are not always clear-cut and differ-
ent methods may be used to train a system.

Source: Nilsson, N. J., Introduction to Machine Learning: An Early Draft of a Proposed 
Textbook (Stanford University: Stanford, CA, 1998), p. 1.
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Box 2. Deep learning 

Deep learning is a type of representation learning, which in turn is a type of machine learn-
ing. Machine learning is used for many but not all approaches to artificial intelligence.

Representation learning is an approach to machine learning whereby the system ‘learns’ 
how to learn: the system transforms raw data input to representations (features) that can be 
effectively exploited in machine-learning tasks. This obviates manual feature engineering 
(whereby features are hard-coded into the system by humans), which would otherwise be 
necessary. 

Deep learning solves a fundamental problem in representation learning by introducing 
representations that are expressed in terms of other, simpler representations. Deep learn-
ing allows the computer to build complex concepts from simpler concepts. A deep-learning 
system can, for instance, represent the concept of an image of a person by combining simple 
concepts, such as corners and contours. 

Deep learning was invented decades ago but has made important progress in recent 
years, thanks to improvements in computing power and increased data availability and 
techniques to train neural networks. 

Source: Goodfellow, I., Bengio, Y. and Courville, A., Deep Learning (MIT Press: Cambridge, 
MA, Forthcoming), p. 8.





6. Conclusions: key takeaways for the Convention on
Certain Conventional Weapons discussions

This working paper aims to clarify some of the basic aspects of autonomy and thereby 
provide insights for future discussions on LAWS within the framework of the CCW. 
The key takeaways can be summarized in three points.

Takeaway 1. Discuss advances of ‘autonomy in weapon systems’ rather than 
autonomous weapon systems or LAWS as a general category 

The study of autonomy as a general attribute of a weapon system is imprecise and 
potentially misleading. Autonomy may serve very different capabilities in different 
weapon systems. For each of these capabilities the parameters of autonomy, whether in 
terms of the human-machine command-and-control relationship or the sophistication 
of the decision-making process, may vary greatly, including over the duration of a mis-
sion. In this regard, the continued reference to the concept of LAWS in the framework 
of the CCW is problematic. It traps states and experts into a complex and contentious 
discussion about the level at which a system might be deemed autonomous, while in 
reality the concerns—be they from a legal, ethical or operational standpoint—need to 
be articulated on the use of autonomy for specific functions or tasks. Future CCW 
discussions could, therefore, usefully benefit from a conceptual reframing and a shift 
from a platform- or system-centric approach to a functional approach to autonomy. 
Focusing on ‘autonomy in weapon systems’ rather than LAWS could foster a much 
more consensual and constructive basis for discussion.1 

Takeaway 2. Future investigations of autonomy should not be limited to 
autonomy as it applies to the targeting process

There is growing agreement among CCW delegates that autonomy raises issues pri-
marily in the context of targeting processes, whether from a legal, ethical or security 
standpoint. However, advances in autonomy in other functional areas should remain 
under scrutiny for at least two reasons. First, because some ‘non-critical’ applica-
tions of autonomy may actually be determinant of the offensive capability of weapon 
systems (think here of capabilities like navigation, swarming and self-repair), and 
may pose relevant concerns in terms of human control: what are the parameters of 
human control when robotic weapons from a large swarm? The second reason is that 
the technological developments that fuel advances in some functional areas, such as 
navigation, may also serve to improve autonomous targeting. The image processing 
software used to power vision-guided navigation and target recognition may share 
many similarities in their design.

1 This view is also shared by a number of experts that have studied the development of autonomy in weapon sys-
tems, including Kerstin Vignard, Chief of Operations at the United Nations Institute for Disarmament Research 
(UNIDIR). Vignard stressed this point in her statement at the 2016 CCW Informal Meeting of Experts on Lethal 
Autonomous Weapon Systems in Geneva in Apr. 2016. Vignard, K., ‘Statement by the United Nations Institute for 
Disarmament Research’, 2016 CCW Informal Meeting of Experts on Lethal Autonomous Weapon Systems, Geneva, 
12 Apr. 2016, <http://www.unog.ch/80256EDD006B8954/(httpAssets)/86C96CC8C7A932DCC1257F930057C0E3/$-
file/2016_LAWS+MX_GeneralExchange_Statements_UNIDIR.pdf>.
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Takeaway 3. Consider alternative development trajectories and their potential 
risks

The barriers to entry toward the development of autonomous systems are very low. 
Most component technologies that may be used to develop autonomy are widely avail-
able in the commercial sector. The main limitation to the creation of autonomy is the 
ingenuity of human programmers. The risk of terrorists or criminal organizations 
developing low-cost autonomous weapon systems should be considered seriously. 

Takeaway 4. Current advances and possible implications of machine learning 
deserve greater scrutiny

Recent advances in machine learning have unlocked important opportunities for 
advancing autonomy in weapon systems, notably in target recognition. At the same 
time, these advances pose new regulatory challenges. One key practical problem is the 
question of how the behaviour of offline and online learning systems should be regu-
lated and controlled through validation and verification procedures. 



Appendix A: Existing definitions of autonomous 
weapon systems
Broadly speaking the definitions of autonomous weapon systems can be classified into 
three groups. 

The first category consists of definitions that are articulated around the nature of the 
human-machine command-and-control relationship. It includes the definition sup-
ported by the United States, which describes ‘autonomous weapon systems’ as ‘a 
weapon that, once activated, can select and engage targets without further interven-
tion by a human operator’.1 It also encompasses the definition proposed by Human 
Rights Watch (HRW), the non-governmental organization that coordinates the Inter-
national Campaign to Stop Killer Robots. HRW makes a distinction between human-
in-the-loop weapons, human-on-the-loop weapons and human-out-of-the-loop weap-
ons. Human-out-of-the-loop weapons are robots that are capable of selecting targets 
and delivering force without any human input or interventions.2 

The second category includes definitions that are based on capability parameters. 
The United Kingdom’s definition, for instance, defines ‘weapon systems’ as systems 
‘capable of understanding higher level intent and direction. From this understanding 
and its perception of its environment, such a system is able to take appropriate action 
to bring about a desired state. It is capable of deciding a course of action, from a num-
ber of alternatives, without depending on human oversight and control, although these 
may still be present’.3 Canada likewise states that ‘autonomy is a subjective assessment 
of a robot’s capabilities given the demands of mission, environment, and mechanical 
system’.4

The definitions in the third categories are structured along legal lines and lay emphasis 
on the nature of tasks that the systems perform autonomously. The definition favoured 
by the International Committee of the Red Cross presents ‘autonomous weapons’ as 
an umbrella term that would encompass any type of weapon with ‘autonomy in its 
“critical functions”, meaning a weapon that can select (i.e. search for or detect, iden-
tify, track) and attack (i.e. intercept, use force against, neutralise, damage or destroy) 
targets without human intervention’.5 Switzerland’s working definition describes 
‘autonomous weapon systems’ as ‘weapons systems that are capable of carrying out 
tasks governed by IHL [international humanitarian law] in partial or full replacement 
of a human in the use of force, notably in the targeting cycle’, although it explicitly 
states that this should not necessarily be limited to the targeting cycle.6

This classification of definitions is, of course, barely an ideal type and does not cover 
all definitions. The Holy See, for example, uses a mixture of definitions characterizing 
armed autonomous robots using ‘(1) the degree and duration of supervision, (2) the 

1 United States Department of Defense, Directive 3000.09 on Autonomy in Weapon Systems, 21 Nov. 2012, <http://
www.dtic.mil/whs/directives/corres/pdf/300009p.pdf>, pp. 13–14.

2 Docherty, B., Losing Humanity: The Case Against Killer Robots (Human Rights Watch/International Human 
Rights Clinic: Washington, DC, 2012). 

3 British Ministry of Defence (MOD), Development, Concepts and Doctrine Centre (DCDC), Joint Doctrine Note 
2/11: The UK Approach to Unmanned Aircraft Systems (MOD DCDC: Shrivenham, 30 Mar. 2011).

4 Government of Canada, ‘Canadian food for thought paper: mapping autonomy’, [n.d.], CCW Informal Meeting of 
Experts on Lethal Autonomous Weapon Systems, Geneva, 11–15 Apr. 2016, <http://www.unog.ch/80256EDD006B8954/
(httpAssets)/C3EFCE5F7BA8613BC1257F8500439B9F/$file/2016_LAWS+MX_CountryPaper+Canada+FFTP1.pdf>.

5 International Committee of the Red Cross (ICRC), ‘Autonomous Weapons: is it morally acceptable for a machine to 
make life and death decisions?’, Statement of the ICRC at the CCW Meeting of Experts on Lethal Autonomous Weapon 
Systems, Geneva, 13–17 Apr. 2015, <https://www.icrc.org/en/document/lethal-autonomous-weapons-systems-LAWS>.

6 Government of Switzerland, ‘Towards a “compliance-based” approach to LAWS’, Informal Working Paper, 
30 Mar. 2016, CCW Informal Meeting of Experts on Lethal Autonomous Weapon Systems, Geneva, 11–15 Apr. 2016, 
<http://www.unog.ch/80256EDD006B8954/(httpAssets)/D2D66A9C427958D6C1257F8700415473/$file/2016_
LAWS+MX_CountryPaper+Switzerland.pdf>.
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predictability of the behaviour of the robot, (3) and the characteristics of the environ-
ment in which it operates’.7 

7 Holy See, ‘Element supporting the prohibition of LAWS’, Working Paper, 7 Apr. 2016, CCW Informal Meeting of 
Experts on Lethal Autonomous Weapon Systems, Geneva, 11–15 Apr. 2016, <http://www.unog.ch/80256EDD006B8954/
(httpAssets)/752E16C02C9AECE4C1257F8F0040D05A/$file/2016_LAWSMX_CountryPaper_Holy+See.pdf>.
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