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Executive summary

This report presents the conclusions of a one-year mapping study on the development
of autonomy in weapon systems. It is intended to provide diplomats and members of
civil society interested in the issue of lethal autonomous weapon systems (LAWS) with
a better understanding of (a) the technological foundations of autonomy; (b) the state
of autonomy in existing weapon systems; (¢) the drivers of, and obstacles to, further
increasing autonomy in weapon systems; and (d) the innovation ecosystems behind
the advance of autonomy in weapon systems.

I. Key findings
What are the technological foundations of autonomy?

Chapter 2 explores the technological foundations of autonomy. The main findings are
as follows.

1. Autonomy has many definitions and interpretations, but is generally understood
to be the ability of a machine to perform an intended task without human intervention
using interaction of its sensors and computer programming with the environment.

2. Autonomy relies on a diverse range of technology but primarily software. The
feasibility of autonomy depends on (a) the ability of software developers to formulate
an intended task in terms of a mathematical problem and a solution; and (b) the possi-
bility of mapping or modelling the operating environment in advance.

3. Autonomy can be created or improved by machine learning. The use of machine
learning in weapon systems is still experimental, as it continues to pose fundamental
problems regarding predictability.

What is the state of autonomy in weapon systems?

Chapter 3 explores the state of autonomy in deployed weapon systems and weapon
systems under development. The main findings are as follows.

1. Autonomy is already used to support various capabilities in weapon systems,
including mobility, targeting, intelligence, interoperability and health management.

2. Automated target recognition (ATR) systems, the technology that enables weapon
systems to acquire targets autonomously, has existed since the 1970s. ATR systems
still have limited perceptual and decision-making intelligence. Their performance
rapidly deteriorates as operating environments become more cluttered and weather
conditions deteriorate.

3. Existing weapon systems that can acquire and engage targets autonomously
are mostly defensive systems. These are operated under human supervision and are
intended to fire autonomously only in situations where the time of engagement is
deemed too short for humans to be able to respond.

4. Loitering weapons are the only ‘offensive’ type of weapon system that is known
to be capable of acquiring and engaging targets autonomously. The loitering time and
geographical areas of deployment, as well as the category of targets they can attack,
are determined in advance by humans.
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What are the drivers of, and obstacles to, the development of autonomy in
weapon systems?

Chapter 4 explores the key drivers and obstacles to an increase of autonomy in weapon
systems. The main drivers identified by the report are as follows.

1. Strategic. The United States recently cited autonomy as a cornerstone of its stra-
tegic capability calculations and military modernization plans. This seems to have
triggered reactions from other major military powers, notably Russia and China.

2. Operational. Military planners believe that autonomy enables weapon systems to
achieve greater speed, accuracy, persistence, reach and coordination on the battlefield.

3. Economic. Autonomy is believed to provide opportunities for reducing the oper-
ating costs of weapon systems, specifically through a more efficient use of manpower.

The main obstacles identified by the report are as follows.

1. Technological. Autonomous systems need to be more adaptive to operate safely
and reliably in complex, dynamic and adversarial environments; new validation and
verification procedures must be developed for systems that are adaptive or capable of
learning.

2. Institutional resistance. Military personnel often lack trust in the safety and
reliability of autonomous systems; some military professionals see the development
of certain autonomous capabilities as a direct threat to their professional ethos or
incompatible with the operational paradigms they are used to.

3. Legal. International law includes a number of obligations that restrict the use of
autonomous targeting capabilities. It also requires military command to maintain, in
most circumstances, some form of human control or oversight over the weapon sys-
tem’s behaviour.

4. Normative. There are increasing normative pressures from civil society against
the use of autonomy for targeting decisions, which makes the development of autono-
mous weapon systems a potentially politically sensitive issue for militaries and govern-
ments.

5. Economic. There are limits to what can be afforded by national armed forces, and
the defence acquisition systems in most arms-producing countries remain ill-suited to
the development of autonomy.

Where are the relevant innovations taking place?

Chapter 5 explores the innovation ecosystems that are driving the advance of auton-
omy. The main findings are as follows.

1. At the basic science and technology level, advances in machine autonomy derive
primarily from research efforts in three disciplines: artificial intelligence (AI), robot-
ics and control theory.

2. The USA is the country that has demonstrated the most visible, articulated and
perhaps successful military research and development (R&D) efforts on autonomy.
China and the majority of the nine other largest arms-producing countries have iden-
tified AT and robotics as important R&D areas. Several of these countries are tenta-
tively following in the USA’s footsteps and looking to conduct R&D projects focused
on autonomy.

3. The civilian industry leads innovation in autonomous technologies. The most
influential players are major information technology companies such as Alphabet
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(Google), Amazon and Baidu, and large automotive manufacturers (e.g. Toyota) that
have moved into the self-driving car business.

4. Traditional arms producers are certainly involved in the development of autono-
mous technologies but the amount of resources that these companies (can) allocate to
R&D is far less than that mobilized by large commercial entities in the civilian sector.
However, the role of defence companies remains crucial, because commercial autono-
mous technologies can rarely be adopted by the military without modifications and
companies in the civilian sector often have little interest in pursuing military con-
tracts.

I1. Recommendations for future discussions on LAWS within the frame-
work of the Convention on Certain Conventional Weapons (CCW)

The report concludes with eight recommendations that aim to help the newly formed
Group of Governmental Experts on LAWS at the United Nations to find a construc-
tive basis for discussions and potentially achieve tangible progress on some of the key
aspects under debate.

1. Discuss the development of ‘autonomy in weapon systems’ rather than autono-
mous weapons or LAWS as a general category.

2. Shift the focus away from ‘full’ autonomy and explore instead how autonomy
transforms human control.

3. Open the scope of investigation beyond the issue of targeting to take into con-
sideration the use of autonomy for collaborative operations (e.g. swarming) and intelli-
gence processing.

4. Demystify the current advances and possible implications of machine learning on
the control of autonomy.

5. Use case studies to reconnect the discussion on legality, ethics and meaningful
human control with the reality of weapon systems development and weapon use.

6. Facilitate an exchange of experience with the civilian sector, especially the aero-
space, automotive and civilian robotics industries, on definitions of autonomy, human
control, and validation and verification of autonomous systems.

7. Investigate options to ensure that future efforts to monitor and potentially control
the development of lethal applications of autonomy will not inhibit civilian innovation.

8. Investigate the options for preventing the risk of weaponization of civilian tech-
nologies by non-state actors.

Key words: artificial intelligence, autonomy, Convention on Certain Conventional
Weapons, existing capabilities, human control, innovation, lethal autonomous weapon
systems, machine learning, mapping study, research and development, robotics, state
of the art, weapon systems.
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1. Introduction

I. Background and objective

Since 2013 the governance of lethal autonomous weapon systems (LAWS) has been
discussed internationally under the framework of the 1980 United Nations Convention
on Certain Conventional Weapons (CCW), which regulates weapons that may be
deemed to have an excessively injurious or indiscriminate effect.! After three years
of informal expert discussions, states parties to the CCW agreed to formalize their
discussion with the creation of a Group of Governmental Experts (GGE). The ques-
tion of whether states parties to the CCW should take formal action on LAWS is not
yet officially on the agenda, but it is bound to be a central point of discussion for the
GGE. The Campaign to Stop Killer Robots—a coalition of non-governmental organ-
izations (NGOs)—and 19 states are advocating the adoption of a pre-emptive ban on
the development, production and use of LAWS.? However, at previous CCW meetings
most other states have expressed that they are not yet ready to discuss this possibility
as they are still in the process of understanding the full implications of increasing
autonomy in weapon systems.

To support states in this process and also contribute to more concrete and structured
discussions on LAWS at CCW meetings, the Stockholm International Peace Research
Institute (SIPRI) conducted a one-year mapping study on the development of auton-
omy in military systems in general and weapon systems in particular. The rationale
for conducting this study was that an assessment of the current state of development
and use of autonomy in weapon systems could provide helpful insights for future
CCW discussions on LAWS. Specifically, such an assessment could support delegates
to (a) improve their understanding of the technological foundations of autonomy and
obtain a sense of the speed and trajectory of progress of autonomy in weapon systems;
(b) find concrete examples that could be used to start delineating the points at which
the advance of autonomy in weapons may raise technical, legal, operational and ethi-
cal concerns; (¢) investigate possible parameters for meaningful human control, using
lessons learned from how existing weapons with autonomous capabilities are used
or misused; and (d) identify realistic options for the monitoring and regulation of the
development of emerging technologies in the area of LAWS.

I1. Approach and methodology

This research report presents the key findings and recommendations of the STPRI
study. It maps the development of autonomy in weapon systems from four different
perspectives: technical, operational, political and economic (see figure 1.1). The aim
of this approach is to provide CCW delegates and interested members of civil soci-
ety with a basic but comprehensive understanding of the development of autonomy in
weapon systems. The report is structured around the following questions.

1. What are the technological foundations of autonomy?

2. What is the state of autonomy in weapon systems?

3. What are the drivers of, and obstacles to, the advance of autonomy in weapon
systems?

4. Where are the relevant innovations taking place?

1 Convention on Prohibitions or Restrictions on the Use of Certain Conventional Weapons Which May Be Deemed
to Be Excessively Injurious or to Have Indiscriminate Effects (CCW Convention, or ‘Inhumane Weapons’ Convention),
with Protocols I, IT and III, opened for signature 10 Apr. 1981, entered into force 2 Dec. 1983.

2 Campaign to Stop Killer Robots, ‘Country views on killer robots’, 17 Oct. 2017.


http://www.stopkillerrobots.org/wp-content/uploads/2013/03/KRC_CountryViews_Oct2017.pdf
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Figure 1.1. A comprehensive approach to mapping the development of autonomy in weapon
systems

The analysis presented in this report is based on an extensive review of the litera-
ture on civilian and military development of autonomy, robotics, artificial intelligence
(AI) and related topics, as well as on a series of in-depth background interviews with
relevant experts. It also builds on two extensive and original data collection efforts:
(@) a mapping of military research and development (R&D) projects that are active, or
were recently completed, in the 10 largest arms-producing countries and China; (b) a
(non-comprehensive) mapping of (unmanned) weapon systems and unarmed mili-
tary robotic systems that feature autonomous functions that have been deployed or
are under development in China, France, Germany, India, Israel, Italy, Japan, South
Korea, Russia, Sweden, the United Kingdom and the United States. Information about
the types, purposes, users, development status and autonomous capabilities of these
systems was recorded and coded into a dataset, which, as of April 2017, consisted of
381 different systems.

II1. Outline

Each of the four main chapters of the report (chapters 2 to 5) tackles one of the key
questions mentioned above. Chapter 2 maps the conceptual and technical foundations
of autonomy. Tt begins with a review of existing interpretations of the concept of
autonomy. It then presents the underlying capabilities and technologies that enable
autonomy, and concludes with a discussion of the difficulties involved in engineering
autonomous capabilities.

Chapter 3 maps the current state of autonomy in existing weapon systems and
military systems more generally. It presents the different functions and capabilities
of autonomy in deployed systems and systems under development. It also reviews
the characteristics and use of existing weapon systems that are known to have the
capability to acquire, or possibly engage, targets autonomously.

Chapter 4 maps the factors driving the adoption of autonomy in weapon systems
and examines some of the obstacles to this process. It discusses the extent to which
major military powers have articulated a strategic reflection on the development of
autonomy in weapon systems and maps out the spectrum of arguments that are com-
monly mobilized to justify the development of autonomy within weapon systems. It
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sets out the variety of technical, political and economic hurdles to further increasing
autonomy in weapon systems.

Chapter 5 explores the innovation ecosystem that is driving the advance of auton-
omy in weapon systems. It maps where relevant innovations are taking place from
three different perspectives: a science and technology perspective; a geographical
perspective; and an industry sector perspective.

The concluding chapter (chapter 6) summarizes the key findings of the report and
returns to the CCW debate on LAWS with a series of practical recommendations that
are intended to help the newly formed GGE to constructively advance debate on LAWS.

The report includes an appendix that contains original research material, as well as
a glossary that provides working definitions of the key technical terms.






2. What are the technological foundations of
autonomy?

I. Introduction

In order to understand the current state and future development of autonomy in
weapon systems and military and civilian systems more generally, it is useful to clar-
ify some basic facts about the conceptual and technological foundations of autonomy.
This chapter aims to provide non-technical experts with answers to the following
basic questions.

1. What is autonomy?
2. How does it work?
3. How is it created?

The chapter consists of four main sections. Section IT maps existing interpretations
of the concept of autonomy. Section III describes the underlying machinery of auton-
omy. Section I'V discusses how autonomy is created and how difficult it is to engineer
autonomous systems or systems with autonomous capabilities. The concluding section
(section V) presents some takeaway points for future discussions on LAWS within the
framework of the CCW.

I1. Searching for a definition: what is autonomy?
Autonomy: a three-dimensional concept

In simple terms ‘autonomy’ can be defined as the ability of a machine to execute a task,
or tasks, without human input, using interactions of computer programming with the
environment.! An autonomous system is, by extension, usually understood as a sys-
tem—whether hardware or software—that, once activated, can perform some tasks or
functions on its own.

However, autonomy is a relative notion: within and across relevant disciplines, be it
engineering, robotics or computer science, experts have a different understanding of
when a system or a system’s function may or may not be deemed autonomous. Accord-
ing to Paul Scharre, these approaches can be divided into three categories: (@) the
human-machine command-and-control relationship; (b) the sophistication of the
machine’s decision-making process; and (¢) the types of decisions or functions being
made autonomous.>

The human-machine command-and-control relationship

Avery common approach for assessing autonomy relates to the extent to which humans
areinvolved in the execution of the task carried out by the machine. With this approach,
the systems can be classified into three categories. Systems that require human input
at some stage of the task execution can be referred to as ‘semi-autonomous’ or ‘human-
in-the-loop’. Systems that can operate independently but are under the oversight of
a human who can intervene if something goes wrong (e.g. a malfunction or systems
failure) are called ‘human-supervised autonomous’ or ‘human-on-the-loop’. Machines

I This definition is based on one previously proposed by Andrew Williams. Williams, A., ‘Defining autonomy
in systems: challenges and solutions’, eds A. P. Williams and P. D. Scharre, Autonomous Systems: Issues for Defence
Policymakers (NATO: Norfolk, VA, 2015).

2 Scharre, P., ‘The opportunity and challenge of autonomous systems’, eds Williams and Scharre (note 1), p. 56.



6 MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS

that operate completely on their own and where humans are not in a position to inter-
vene are usually referred to as ‘fully autonomous’ or ‘human-out-of-the-loop’. The
concept of ‘sliding autonomy’ is sometimes also employed to refer to systems that can
go back and forth between semi-autonomy and full autonomy, depending on the com-
plexity of the mission, external operating environments and, most importantly, legal
and policy constraints.

The sophistication of the machine’s decision-making process

A more technical approach to autonomy relates to the actual ability of a system to exer-
cise control over its own behaviour (self-governance) and deal with uncertainties in
its operating environment.? From this standpoint, systems are often sorted into three
major categories: automatic, automated and autonomous systems. The label ‘auto-
matic’ is usually reserved for systems that mechanically respond to sensory input and
step through predefined procedures, and whose functioning cannot accommodate
uncertainties in the operating environment (e.g. robotic arms used in the manufactur-
ing industry). Machines that can cope with variations in their environment and exer-
cise control over their actions can either be described as automated or autonomous.
What distinguishes an automated system from an autonomous system is a conten-
tious issue. Some experts see the difference in terms of degree of self-governance, and
view autonomous systems merely as more complex and intelligent forms of automated
systems.* Others see value in making a clear distinction between the two concepts.
Andrew Williams, for instance, presents an ‘automated system’ as a system that ‘is
programmed to logically follow a predefined set of rules in order to provide an out-
come; its output is predictable if the set of rules under which it operates is known’. On
the other hand, an ‘autonomous system’:

is capable of understanding higher-level intent and direction. From this understanding and its per-
ception of its environment, such a system can take appropriate action to bring about a desired state.
It is capable of deciding a course of action, from a number of alternatives, without depending on
human oversight and control, although these may still be present. Although the overall activity of
an autonomous unmanned aircraft will be predictable, individual actions may not be.®

While the distinction between automatic, automated and autonomous can be con-
ceptually useful, in practice it has proved difficult to measure and therefore determine
whether a system falls within one of the three categories. Moreover, the definitions of,
and boundaries between, these three categories are contested within and between the
expert communities.

The types of decisions or functions being made autonomous

A third dimension to consider focuses on the types of decisions or functions that are
made autonomous within a system. This ‘functional’ approach is not incompatible
with the two other approaches; it acknowledges simply that referring to autonomy as
a general attribute of systems is imprecise, if not meaningless, as it is the nature of the
tasks that are completed autonomously by a machine that primarily matters, not the
level of autonomy of the systems as a whole. Autonomy is best understood in relation to

3 According to Thrun, ‘Autonomy refers to a robot’s ability to accommodate variations in its environment. Different
robots exhibit different degrees of autonomy; the degree of autonomy is often measured by relating the degree at
which the environment can be varied to the mean time between failures, and other factors indicative of robot perfor-
mance’. Thrun, S., ‘Toward a framework for human-robot interaction’, Human-Computer Interaction, vol. 19, no. 1-2
(2004), pp. 9-24.

4 Mindell, D., Our Robots, Ourselves: Robotics and the Myths of Autonomy (Viking: New York, 2015), p. 12.

5 Williams (note ).
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the types of tasks that are executed at the subsystems/function level.¢ Some functions
in weapon systems may be made autonomous without presenting significant ethical,
legal or strategic risks (e.g. navigation), while others may be a source of greater con-
cern (e.g. targeting).”

Autonomy in weapon systems: a situated approach

For its study, SIPRI favoured a ‘functional approach’ to autonomy. The notable merit
of this approach is that it enables a flexible examination of the challenges posed by
autonomy in weapon systems. It recognizes that the human-machine command-and-
control relationship and the sophistication of a machine’s decision-making capability
may vary from one function to another. Some functions may require a greater level
of self-governance than others, while human control may be exerted on some func-
tions but not others depending on the mission complexity and the external operating
environment, as well as regulatory constraints. Also, the extent of a human operator’s
control or cancel functions may change during the system’s mission.

Thus, it could be said that the focus of the research presented in this report is on the
development of autonomy in weapon systems rather than the development of autono-
mous systems per se.® The ambition is to discuss the development and application of
autonomy in a large range of weapon systems in general, not just the few types of
weapon systems that may be classified as autonomous according to some existing def-
initions (current definitions of autonomous weapon systems are presented in box 2.1;
the types of weapon systems that are sometimes described as autonomous are pre-
sented in chapter 3).

I11. Unravelling the machinery
How does autonomy work?

From a basic technical standpoint, ‘autonomy is about transforming data from the
environment into purposeful plans and actions’.’ Regardless of the nature of the
human-machine relationship, the degree of sophistication of the system or the type of
task that is executed, autonomy (in a physical system) is always enabled by the integra-
tion of the same three fundamental capabilities: sense, decide and act.'* These capabil-
ities will be presented in turn.

6 United Nations Institute for Disarmament Research (UNIDIR), Framing Discussions on the Weaponization of
Increasingly Autonomous Technologies, UNIDIR Resources No. 1 (UNIDIR: Geneva, 2014).

7 NATO, Uninhabited Military Vehicles (UM Vs): Human Factors IssuesinAugmentingthe Force, RTO Technical Report
TR-HFM-078 (NATO: 2007); Vignard, K., ‘Statement of the UN Institute for Disarmament Research’, CCW Informal
Meeting of Experts on Lethal Autonomous Weapon Systems, Geneva, 12 Apr. 2016; and Gillespie, A., ‘Humanity and
lethal robots: an engineering perspective’, eds G. Verdirame et al., SNT Really Makes Reality, Technological Innovation,
Non-obvious Warfare and the Challenges to International Law (King’s College London: London, forthcoming).

8 Foranumber of experts, the term ‘autonomous weapon systems’is actually amisnomer. Stensson and Jansson argue,
for instance, that the concept of ‘autonomy’ is maladaptive as it implies, philosophically, qualities that technologies
cannot have. For them, machines, by definition, cannot be autonomous. Stensson, P. and Jansson, A., ‘Autonomous
technology: source of confusion: a model for explanation and prediction of conceptual shifts’, Ergonomics, vol. 57,
no. 3 (2014), pp. 455-70. The concept of autonomous systems has also caused complex and contentious debate regarding
the level at which a system may be deemed truly autonomous. In a report dated 2012, the US Department of Defense’s
Defense Science Board concluded that defining levels of autonomy was a waste of time and money, and tended to
reinforce fears of unbounded autonomy. The report noted that discussion of levels of autonomy ‘deflects focus from
the fact that all autonomous systems are joint human-machine cognitive systems ... all systems are supervised by
humans to some degree ... There are no fully autonomous weapons systems as there are no fully autonomous sailors,
airmen, or marines’. US Department of Defense (DOD), Defense Science Board, Task Force Report: Role of Autonomy in
DOD Systems (DOD: Washington, DC, 2012), pp. 23-24. See also Bradshaw, J. et al., “The seven deadly myths of auton-
omous systems’, IEEE Intelligent Systems, vol. 28, no. 3 (2013), pp. 54-61.

9 Mindell (note 4), p.-12.

10 yS Department of Defense (DOD), Office of Technical Intelligence, Office of the Assistant Secretary of Defense
for Research and Engineering, Technical Assessment: Autonomy (DOD: Washington, DC, Feb. 2015), p. 2.
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Box 2.1. Existing definitions of autonomous weapon systems

Broadly speaking, the definitions of autonomous weapon systems can be classified into three groups.

1. The first category consists of definitions that are articulated around the nature of the human-machine
command-and-control relationship. It includes the definition supported by the United States, which
describes an ‘autonomous weapon system’ as ‘a weapon that, once activated, can select and engage targets
without further intervention by a human operator’.? It also encompasses the definition proposed by Human
Rights Watch (HRW), the non-governmental organization that coordinates the International Campaign
to Stop Killer Robots. HRW makes a distinction between human-in-the-loop weapons, human-on-the-
loop weapons and human-out-of-the-loop weapons. Human-out-of-the-loop weapons are robots that are
capable of selecting targets and delivering force without any human input or interventions.

2. The second category includes definitions that are based on capability parameters. The United
Kingdom’s definition, for instance, defines an ‘autonomous weapon system’ as a system that is ‘capable
of understanding a higher-level of intent and direction. From this understanding and its perception of its
environment, such a system is able to take appropriate action to bring about a desired state. It is capable
of deciding a course of action, from a number of alternatives, without depending on human oversight and
control, although these may be present. Although the overall activity of an autonomous unmanned aircraft
will be predictable, individual actions may not be’.¢

3. The definitions in the third category are structured along legal lines and lay emphasis on the nature
of tasks that the systems perform autonomously. The definition favoured by the International Committee
of the Red Cross presents ‘autonomous weapons’ as an umbrella term that would encompass any type of
weapon with ‘autonomy in its “critical functions”, meaning a weapon that can select (i.e. search for or
detect, identify, track) and attack (i.e. intercept, use force against, neutralize, damage or destroy) targets
without human intervention’.d Switzerland’s working definition describes ‘autonomous weapon systems’
as ‘weapons systems that are capable of carrying out tasks governed by THL [international humanitarian
law] in partial or full replacement of a human in the use of force, notably in the targeting cycle’, although it
explicitly states that this should not necessarily be limited to the targeting cycle.®

This classification of definitions is, of course, hardly ideal and does not cover all definitions. The Holy See,
for example, uses a mixture of definitions characterizing armed autonomous robots using ‘(1) the degree
and duration of supervision, (2) the predictability of the behaviour of the robot, (3) and the characteristics
of the environment in which it operates’.f

2 US Department of Defense, Directive 3000.09 on Autonomy in Weapon Systems, 21 Nov. 2012.

b Docherty, B., Losing Humanity: The Case Against Killer Robots (Human Rights Watch/International
Human Rights Clinic: Washington, DC, 2012).

¢ British Ministry of Defence, Development, Concepts and Doctrine Centre (DCDC), Joint Doctrine
Publication 0.30.2: Unmanned Aircraft Systems (DCDC: Shrivenham, Aug. 2017), p. 13.

d International Committee of the Red Cross (ICRC), ‘Autonomous weapon systems: is it morally
acceptable for a machine to make life and death decisions?”, CCW Meeting of Experts on Lethal
Autonomous Weapon Systems, Geneva, 13-17 Apr. 2015.

¢ Government of Switzerland, “Towards a “compliance-based” approach to LAWS’, Informal Working
Paper, 30 Mar. 2016, CCW Informal Meeting of Experts on Lethal Autonomous Weapon Systems, Geneva,
11-15 Apr. 2016.

f Holy See, ‘Element supporting the prohibition of LAWS’, Working Paper, 7 Apr. 2016, CCW Informal
Meeting of Experts on Lethal Autonomous Weapon Systems, Geneva, 11-15 Apr. 2016.

Sense

To complete a task autonomously a system needs to be able to perceive the environ-
ment in which it operates. For that, it requires sensors to collect data (the ‘sense’ part
of perception) and a computer which uses a dedicated program—a sensing software—
that can fuse and interpret the data (the ‘think’ part of perception).!* The way sensing
software works can vary significantly depending on the type of sensory data and the
end use of the processed data. Many types of sensing software, notably computer vision
software used for target detection, rely on pattern recognition: the software looks for
predefined patterns in the raw data and compares them to example patterns stored in
a computer memory, either on-board or off-board the system. It is worth emphasizing
that computers identify patterns, such as for image or speech recognition, in a funda-
mentally different way from the way humans do. They use mathematical methods to

11 sensors may also be turned inwards to make the system capable of self-assessment, e.g. monitoring power
resources or the state of physical components.


https://www.hsdl.org/?view&did=726163
http://www.unog.ch/80256EDD006B8954/(httpAssets)/752E16C02C9AECE4C1257F8F0040D05A/$file/2016_LAWSMX_CountryPaper_Holy+See.pdf
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find relationships in the sensory data. This means that when computers make errors,
they are very different from those that a human would make. Recent studies have
shown that state of the art computer vision systems that display human-competitive
results on many pattern recognition tasks can easily be fooled. One study illustrated
that changing an image originally correctly classified (e.g. a lion) in a way that is
imperceptible to the human eye can cause the computer vision software to label the
image as something entirely different (e.g. mislabelling a lion as a library).!? Another
study demonstrated that it is easy to produce images that are completely unrecogniz-
able to humans but that computer vision software believes to be a recognizable object
with over 99 per cent confidence.'®

Decide

The data that has been processed by the sensing software serves then as input for the
decision-making process, which is assured by the control system. The way the con-
trol system determines the course of action towards the task-specific goal can differ
greatly from one system to another. Drawing upon Stuart Russell’s and Peter Norvig’s
classification of intelligent agents, two generic categories of control system (which
themselves can be further divided into two types) can be identified: (a) reactive con-
trol systems (simple or model-based); and (b) deliberative control systems (goal-based
or utility-based).!* The decision-making processes presented by these categories differ
radically from each other.

Reactive control systems can be divided into two subtypes: simple reflex-control sys-
tems and model-based reflex-control systems. Simple reflex systems follow a strict
sense—act modality. They merely consist of a set of condition-action rules (also known
as ‘if-then rules’) that explicitly prescribe how the system should react to a given sen-
sory input. To take the example of a landmine, these rules would be: if the weight
exerted on the mine is between X and Y kilogrammes, then detonate. These systems
succeed only in environments that are fully observable through sensors.

Model-based reflex-control systems are slightly more complex in their design as
they include a ‘model of the world’, meaning a knowledge base that represents, in
mathematical terms, how the world works: how it evolves independently of the sys-
tem and how the system’s actions affect it (see figure 2.1). The additional information
provided by the model helps to improve performance and reliability as it aids the con-
trol system to keep track of its percept history and parts of the environment it cannot
observe though its sensors.’® For instance, for an autonomous vacuum cleaner this
information could simply be a map of the surface that has to be vacuumed. Like simple
reflex-control systems, model-based reflex-control systems follow a fixed set of rules
and their decision making is implemented in some form of direct mapping from situ-
ation to action.

12 5zegedy, C. et al., ‘Intriguing properties of neural networks’, arXiv:1312.6199v4 [cs.CV], 19 Feb. 2014.

13 Nguyen, A., Yosinski, J. and Clune J., ‘Deep neural networks are easily fooled: high confidence predictions
for unrecognizable images’, Institute of Electrical and Electronics Engineers (IEEE), Computer Vision and Pattern
Recognition, 2015.

14 Russell and Norvig define ‘agents’ as ‘anything that can be viewed as perceiving its environment through sen-
sors and acting upon that environment through actuators’; an agent can be a human, a robot or software. Russell, S.
and Norvig, P., Artificial Intelligence: A Modern Approach, 3rd edn (Pearson Education: Harlow, 2014), p. 35, p. 49.
Note that other typologies could be used to categorize control systems. Using Albus’s and Barbera’s classification
of planning algorithms, control systems could be sorted between those that use ‘case-based planning’ and ‘search-
based planning’. Albus, J. and Barbera, A., 4D/RCS reference model architecture for unmanned ground vehicles’, eds
R. Madhavan, E. Messina and J. Albus, Intelligent Vehicles Systems (Nova Science Publishers: New York, 2006),
pp. 11-12.

15 Russell and Norvig describe reflex agents that include a model of the world as model-based reflex agents. Those
that do not have a model are referred to as a ‘simple reflex agent’. Russell and Norvig (note 14).


https://arxiv.org/pdf/1312.6199v4.pdf
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Figure 2.1. Anatomy of autonomy: reactive and deliberative systems

Deliberative control systems can govern their own actions by manipulating data
structures, representing what Gerhard Weiss calls their ‘beliefs’, ‘desires’ and ‘inten-
tions’.’6 They combine a model of the world (belief about how the world works and the
reactions to the system’s actions), a value function that provides information about
the desired goal (desire), and a set of potential rules that help the system to search
and plan how to achieve the goal (intention) (see figure 2.1).” To make a decision,
deliberative control systems weigh the consequences of possible actions and measure
whether and to what extent they will serve the achievement of the goal. One concrete
example would be the homing function in a beyond-visual-range air-to-air missile
(e.g. the Meteor missile developed by the European producer MBDA). The desired
goal of the missile is to attack a predetermined target. Combining input from sensors,
information from the model of the world and the rules included in its utility function,
the missile’s control system can find the quickest and most energy-efficient route to
approach the target. It can then track the target until it has an opportunity to attack it.

Deliberative control systems feature a level of deliberative intelligence or self-
governance that reflex agents do not have. They do not simply go through a series of
pre-scripted actions; they can reason about the possible consequences of actions and
then act accordingly. Their main advantage is flexibility. They can handle scenarios
that could not be foreseen in the design stage. This does not necessarily mean, how-
ever, that their behaviour is not predictable or that the systems are capable of free will.
Control systems do only what they are programmed to do, regardless of the complex-
ity of their programming.'®

16 Weiss, G., Multiagent Systems, 2nd edn (MIT Press: Cambridge, MA, 2013), pp. 54-55. Note that belief, desire and
intention are expressed in numerical terms. The value function assigns numbers to an action to achieve a goal. E.g.
a task to pick up an object would give 1 as a value for picking up the object and 0 otherwise, maybe 0.5 if the object is
picked up but then falls.

17 Control systems that only include goal information in their value function are counted as ‘goal-based systems’
under Russell’s and Norvig’s classification. Control systems that include information about utility of the action out-
comes in their value function are called ‘utility-based agents’. These agents can vector performance and efficiency
factors to maximize their course of action. Utility-based agents are more intelligent and efficient than goal-based
agents. They are preferable when meeting the goal cannot be achieved in a single action and the agent is required to
plan a series of sequential actions. Russell and Norvig (note 14).

18 Righetti, L., ‘Emerging technology and future autonomous systems: speaker’s summary’, Autonomous Weapon
Systems: Implication of Increasing Autonomy in the Critical Functions of Weapons, Expert Meeting, Versoix,
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It should be mentioned that ‘randomized’ algorithms can be used in both reac-
tive control systems and deliberative control systems. Randomized algorithms are
‘non-deterministic’ in that they allow systems to randomly pick a solution to solve a
problem. In the context of a reactive agent, the use of randomized algorithms allows
the agent to escape from an infinite loop (i.e. the situation when an agent endlessly
repeats an action to meet a goal but the goal cannot be achieved by that action) by
randomly picking between two predetermined alternatives. In the case of a vacuum
cleaner, this could be randomly turning left or right when confronted by an obstacle.
In deliberative control, the use of randomized algorithms is useful to prevent a sys-
tem from having to search all possible combinations of actions. For some processes,
the use of random algorithms provides the simplest or fastest way to achieve a result.
The issue with the use of randomized algorithms is that it provides such systems with
the potential to generate different behaviour under the same input condition. In other
words, it introduces some unpredictability into the behaviour of the system. That is
why the use of non-deterministic algorithms is rare in safety-critical systems (i.e. sys-
tems whose failure could result in loss of life, significant property damage, or damage
to the environment), which include application areas such as medical devices, aircraft
flight control, weapons and nuclear systems.®

Act

The decisions made by the control systems are then exerted in the real world through
computational or physical means.?® In the cyber-realm, for instance, this could be a
software program that would implement a specific action such as blocking a malicious
code. When discussing robotic platforms, the means through which the systems inter-
act with the environment are commonly referred to as ‘end-effectors’ and ‘actuators’.
End-effectors are the physical devices that assert physical force on the environment:
wheels, legs and wings for locomotion, as well as grippers and, of course, weapons.
Actuators are the ‘muscles’ that enable the end-effectors to exert force, and include
things such as electric motors and hydraulic or pneumatic cylinders. It should be noted
that actuators and end-effectors might in some cases be coupled with sensors that will
provide feedback information to the control systems concerning the task execution.

In summary, autonomy derives, from a technical standpoint, from the ability of a
system to sense and act upon an environment and direct its activity towards achieving
a given goal. Figure 2.1 represents in a simple fashion how these different capabilities
interact with each other within a system that uses a (model-based) reactive control
system or a deliberative control system.

What are the underlying technologies?

Anatomy of autonomy: underlying technology architecture

As implied by the previous description, autonomy is, at a fundamental level, always
enabled by some type of underlying technology:

1. Sensors that allow the system to gather data about the world.
2. A suite of computer hardware and software that allows the system to interpret
data from the sensor and transform it into plans and actions. The three most important

Switzerland, 15-16 Mar. 2016, p. 39.

19 Knight, J., ‘Safety critical systems: challenges and directions’, Conference paper, 24th International Conference
on Software Engineering, Orlando, Florida, 19-25 May 2002.

20 Russell and Norvig (note 14), pp. 988-90.
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technologies in this regard are computer chips, sensing software and control software
that together form the ‘brain’ of the system.

3. Communication technology and human-machine interfaces that allow the sys-
tem to interact with other agents, whether they be machines or humans.

4. Actuators and end-effectors that allow the system to execute the actions in its
operating environment.

These different components form the underlying architecture of autonomy. The
actual characteristics of these underlying technologies will be different depending on
the nature of the task and the operating environment. It should also be noted that
technologies may be integrated within a single machine (which could be described as
‘self-contained autonomy’) or distributed across a network of machines (which could
be described as ‘distributed autonomy”).

Autonomy: a ‘software endeavour’

Advances in autonomy in weapon systems are dependent upon technological progress
in multiple areas. Advances in sensor technologies are certainly crucial as such tech-
nologies determine the accuracy of the data that systems can collect on their operat-
ing environments. Likewise, advances in computer processing technologies play an
important role as they determine the speed at which the software part of a system can
‘think’ as well as the volume of data that it can efficiently handle. The design of the
actuators and end-effectors will also affect the hardiness, endurance and cost of the
systems.

The technologies that are deemed the most critical to autonomy, however, are the
software elements. As a 2012 report by the Defense Science Board of the US Depart-
ment of Defense (DOD) pointed out, autonomy is primarily a ‘software endeavour’.?!
It is the complexity of sensing, modelling and decision-making software that actually
determines the level of autonomy of a system. In other words, autonomy is a very ‘dif-
fuse’ technology that does not easily lend itself to being tracked or measured because
it fundamentally depends on the ingenuity of human programmers to find a way to
break down a problem into mathematical rules and instructions that the computer
will be able to handle. That being said, the state of the art is relatively well known.
The following section describes what is currently feasible for humans to achieve in
programming within the bounds of contemporary knowledge.

IV. Creating autonomy

This section takes stock of the extent to which autonomy remains an engineering chal-
lenge. It starts by discussing the variables that make autonomy difficult to engineer
from a programming perspective. Next, it presents the state of enabling technology
and what such technology allows through the development of machine perception,
decision making and actuation. Finally, it discusses how autonomy is programmed
and the extent to which the recent progress made in machine learning could fuel sig-
nificant advances in autonomy in weapon systems.

How difficult is it to achieve autonomy?

Achieving autonomy is, by definition, not actually that difficult. According to Russell
and Norvig, the extent to which it is feasible with today’s technology depends on two

21 US Department of Defense (DOD), Defense Science Board (note 8) p. 22.



WHAT ARE THE TECHNOLOGICAL FOUNDATIONS OF AUTONOMY? 13

interrelated variables: (a) the complexity of the task; and (b) the complexity of the
environment (see figure 2.2).2

The complexity of the task

The complexity of a task primarily has to do with the extent to which it is possible
to model the task mathematically and does not reflect how difficult its execution
might be according to human standards. A famous paradox in the AI and robotics
community—known as ‘Moravec’s paradox’—is that ‘hard problems are easy and easy
problems are hard’. According to Hans Moravec, ‘it is comparatively easy to make
computers exhibit adult level performance on intelligence tests or playing checkers,
and difficult or impossible to give them the skills of a one-year-old when it comes to
perception and mobility’.?®

There are several variables that contribute to making a task complex from a pro-
grammer’s point of view. The first variable is precision: how well defined is the task?
Does the task follow programmable rules or a concrete logic? The more abstract or
ill-defined the task specifications, the harder it is to formulate in terms of a mathemat-
ical problem and a solution.

The second factor is that of tangibility: can the expected outcome be quantified?
Task executions that require qualitative judgement are often problematic because the
outcome cannot be assessed in objective terms. It is debatable for instance whether
the principles that govern the use of force in international humanitarian law (IHL)—
notably proportionality and precaution in attacks—could, or should, ever be repre-
sented in terms that a computer could reason with. A third variable is dimensionality:
can the task be executed in a single action or does it require sequential decisions and
actions? How many possibilities are the systems facing to execute each action? The
combined answers to these two questions determine the number of possibilities that
the systems might have to process to take a decision. The more possibilities that exist,
the more advanced the programming needs to be and the more computing power
is necessary to engineer optimal solutions to a problem. A fourth variable is inter-
action: does execution of the task require interaction with other autonomous agents
(e.g. humans)? What is the nature of the interaction: are agents competing, collaborat-
ing or simply communicating? Modelling interaction with other agents, particularly
humans, in either a competitive or collaborative context is fundamentally difficult as
human behaviour is often unpredictable.

The complexity of the environment

The complexity of the environment derives from several elements. Is the environ-
ment fully observable or partially observable through sensors? Is it a known or well-
understood environment? Is it structured or unstructured? Is it cluttered or unclut-
tered? Is it static or dynamic? Is it a deterministic or stochastic environment (i.e. does
the system’s action always produce the same effects on it?) Is it an adversarial environ-
ment where actors may actively seek to defeat the system? All these variables affect
the extent to which the environment is predictable and can be modelled in advance
either explicitly (e.g. a map showing what the environment looks like precisely) or
implicitly (rules about how it works, e.g. rules of the road). The less predictable the
environment, the harder it is to model and therefore the harder it is to create autono-
mous capabilities within systems, at least those that are effective and reliable.

22 Russell and Norvig (note 14).
23 pinker, S., The Language Instinct (Harper Perennial: New York, 2007), pp. 190-91; and Moravec, H., Mind
Children (Harvard University Press: Cambridge, MA, 1988).
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Figure 2.2. Complexity factors in creating autonomy

Source: Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach, 3rd edn (Pearson Education:
Harlow, 2014).

The case of navigational autonomy in robotic platforms provides a good illustra-
tion of the challenges posed by varying levels of complexity in different environments.
Navigational autonomy is comparatively easy to create for systems operating in the air
or underwater for the simple reason that generally these two domains are uncluttered:
they feature a limited number of possible obstacles. In addition, the laws of physics
in these two domains are well understood. Hence, they can be easily represented in
mathematical terms. The land domain, on the other hand, offers greater complex-
ity in many regards: the structure of the terrain may vary greatly, the systems may
face many different types of obstacles and have to interact with other autonomous
agents—either other machines or humans—whose behaviour might be unpredictable.
Engineers know very well how to make self-driving vehicles that can operate within
constrained and structured environments (within a factory or on the tarmac of an
airport) or unpopulated or sparsely populated semi-structured environments (such as
a motorway) because these can easily be explicitly mapped or implicitly modelled in
advance. Making self-driving vehicles capable of operating in highly diverse human
environments, such as a city centre, and various weather conditions is much more
challenging because it is difficult—if not impossible—for a programmer to develop a
model that will capture all possible combinations of events. By definition, a model is
a simplified version of the world; there is always a risk of a corner case (i.e. a problem
or situation that has not been represented and planned for in the model of the world).

What are the bottlenecks?

Presenting the current state of autonomy in a single description is difficult because
the description depends upon the types of tasks, systems and environments that are of
interest. Advances in autonomy in the context of weapon systems will be discussed in
the next chapter. Several general observations can be made, however, with regard to
the advances and limitations of underlying capabilities: perception, decision making
and actuation.
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Perception

Advances in machine perception are key to the progress of machine autonomy. In
many respects, it is the limitation of perceptual intelligence that is today the most
important obstacle to the development and use of robotic technologies outside simple,
predictable or well-controlled environments.

Computers are increasingly efficient at sensing and making sense of the world. The
ability of computer vision systems to recognize objects and people, and scenes and
events, continues to improve. Speech recognition technologies are also increasingly
efficient at recognizing spoken words and sentences. Computers still struggle, how-
ever, with interpreting the wider context. State of the art computer vision software
may identify that a person is walking, but it is unable to determine why the person is
walking. Likewise, state of the art speech interfaces can recognize a complex spoken
sentence (what is said) but are unable to determine or recognize the topic of the con-
versation (what is being discussed). A computer’s lack of contextual understanding
derives from the fact that it remains very complex for engineers to represent in a
model the abstract relationship between objects and people in the real world.?*

From the perspective of autonomy, a fundamentally problematic consequence of a
computer’s perceptual intelligence limitations is that the systems or system functions
can easily be tricked and defeated by a malevolent actor or unforeseen situations in the
system’s operating environment.

Decision making

Part of the limitations of machine perception derives from the limitation of synthetic
reasoning. Advances in computer processing technology enable computers to perform
calculations that are far beyond human capabilities. They are powerful, fast and pre-
cise. However, computers only excel at deductive reasoning, whereas humans are also
able to conduct inductive and adductive reasoning. Computers still have major diffi-
culties inferring general rules from single real-life cases (they need evidence of a large
number of similar situations in order to learn). This is one reason why fielding autono-
mous robots in unknown and uncertain environments is currently so problematic.
Because they cannot as yet generalize from previous experiences and adapt to novel
situations, they can only function reliably in situations that the programmers have
prior knowledge of.?s

Designing autonomy for general tasks that demand a complicated combination of
subtasks, planning and motion planning—for example, making a humanoid robot cook
a meal—continues to be a fundamentally complex endeavour as it is difficult to model
all the decision-making parameters, and it requires a significant volume of calculation
for the systems to find the optimal solutions. Despite many significant technological
advances, the current state of computer processing remains an obstacle to the execu-
tion of such tasks: it might take a long time or a lot of computer processing resources to
solve every facet of the mathematical problem that these tasks involve.

Hardware problems

Advances in autonomy are hindered not only by the limitations of computer process-
ing technology and software engineering but also by hardware weaknesses, with
power sources posing a particular challenge. For many robotic systems (e.g. humanoid

24 Karpathy, A., “The state of computer vision and AI: we are really, really far away’, Andrej Karpathy Blog, 22 Oct.
2012.

25 Endsley, M. R., Autonomous Horizons: System Autonomy in the Air Force: A Path to the Future, Volume I:
Human-Autonomy Teaming (United States Air Force, Office of the Chief Scientist: Washington, DC, 2015), p. 5; and
Cummings, M., Artificial Intelligence and the Future of Warfare, Research Report (Chatham House: London, 2017).
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Box 2.2. Machine-learning methods

According to Nilsson, ‘a machine learns whenever it changes its structure, program, or data (based on
its inputs or in response to external information) in such a manner that its expected future performance
improves. Some of these changes, such as the addition of a record to a database, fall comfortably within the
province of other disciplines and are not necessarily better understood for being called learning. But, for
example, when the performance of a speech recognition machine improves after hearing several samples of
a person’s speech, we feel quite justified in that case to say that the machine has learned’.

A machine canlearn on the job (online learning) or during a training phase (offline) with a wide spectrum
of methods that can be sorted into four generic categories: reinforcement learning, supervised learning,
unsupervised learning and semi-supervised learning.

1. Reinforcement learning. The machine receives some reward for its action. It obtains more rewards
when the outcome is closer to the desired outcome. This motivates it to find the most suitable solution. The
desired outcome is never presented to the machine.

2. Supervised learning. The machine learns by comparing example inputs with desired outputs. The data
is labelled with the correct answer. Examples include systems that learn image recognition by scanning
databases with tagged images.

3. Unsupervised learning. The machine is only presented with raw data and it must find patterns in the
data itself. It is the most difficult method of learning and the one that currently shows the least mature
results.

4. Semi-supervised learning. The machine is presented with both labelled and unlabelled examples of
data.

In practice, the distinctions between the categories are not always clear-cut and different methods may
be used to train a system.

Source: Nilsson, N. J., Introduction to Machine Learning: An Early Draft of a Proposed Textbook (Stanford
University: Stanford, CA, 1998), p. 1.

robots), the heavy weight and limited durability of batteries are fundamental obstacles
to their viable use in outdoor and unstructured environments.

Handcraft programming versus machine learning

Currently, most software is handcrafted, meaning that human programmers are
entirely responsible for defining the problems to be solved by the software and the
way in which it solves those problems. This requires a great deal of research on how
the world works. Engineers developing autonomous systems often cooperate with sci-
entists from other scientific fields, notably the natural sciences (e.g. neurosciences and
physics) and the social sciences (e.g. psychology, linguistics and sociology), in order to
develop the model and rules that will govern the behaviour of the systems, whether
for perception or decision making.

Handcraft programming has limitations, particularly when tasks and operating
environments are too complex for a human to model them completely.?é This is one of
the reasons why in many areas of AI and robotics research—two disciplines that are
directly involved in the development of autonomy—programmers now rely extensively
on machine learning to develop their systems.?”

Machine learning is an approach to software development that consists of building
a system that can learn and then teaching it what to do using a variety of methods (see
box 2.2). This is a complex and data-heavy undertaking. Machines learn by abstract-
ing statistical relationships in data. To be taught, they need to be provided with large
amounts of training data (real-world examples) and rules about the data relationship.
The main advantage of machine learning compared with traditional programming is
that humans do not have to explicitly define the problem or the solution; instead, the
machine is designed to improve its knowledge through experience.

26 Kester, L., ‘Mapping autonomy’, Presentation at the CCW Informal Meeting of Experts on Lethal Autonomous
‘Weapon Systems, Geneva, 11-15 Apr. 2016.
27 Russell and Norvig (note 14), p. 56.
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Box 2.3. Deep learning

Deep learning is a type of representation learning, which in turn is a type of machine learning. Machine
learning is used for many but not all approaches to artificial intelligence.

Representation learning is an approach to machine learning whereby the system ‘learns’ how to learn:
the system transforms raw data input to representations (features) that can be effectively exploited in
machine-learning tasks. This obviates manual feature engineering (whereby features are hard-coded into
the system by humans), which would otherwise be necessary.

Deep learning solves a fundamental problem in representation learning by introducing representations
that are expressed in terms of other, simpler representations. Deep learning allows the computer to build
complex concepts from simpler concepts. A deep-learning system can, for instance, represent the concept
of an image of a person by combining simple concepts, such as corners and contours.

Deep learning was invented decades ago but has made important progress in recent years, thanks to
improvements in computing power and increased data availability and techniques to train neural networks.

Source: Goodfellow, I., Bengio, Y. and Courville, A., Deep Learning (MIT Press: Cambridge, MA, 2016), p. 8.

Machine learning: opportunities and challenges

Machine learning has been around for decades but has made great strides in recent
years, notably due to improvements in computer power and developments in deep
learning—a specific technique based on neural networks, which draws on knowledge
of the human brain, statistics and applied maths (see box 2.3).28 These recent advances
have created both important opportunities and challenges for the development of
autonomy in weapon systems.

Recent advances in machine learning have proved to be very useful for machine per-
ception. They allow the programmer to design sensing software that features remark-
able capabilities in terms of pattern recognition (whether objects, faces or radio sig-
nals).? They create improvement opportunities in all application areas of autonomy in
weapon systems, from target recognition to navigation.

Machine learning also poses a number of practical challenges. First, machine learn-
ing is data intensive: in order to learn, the systems must be supplied with large volumes
of training data. For many tasks, including targeting, the lack of high-quality training
datasets remains a fundamental problem. This has led some experts to speculate that
‘datasets—not algorithms—might be the key limiting factor to development of human-
level artificial intelligence’.3°

A second fundamental challenge concerns the predictability of systems.3
Machine-learning systems, particularly those that run on deep neural networks,
could be said to operate like ‘black box’ systems: the input and output of the system
are observable but the process leading from input to output is unknown or difficult
to understand. It is particularly difficult for humans to understand what such sys-
tems have learned and hence how they might react to input data that is very differ-
ent from that used during the training phase.3? Likewise, unless the system’s learn-
ing algorithm is frozen at the end of the training phase, once deployed, it might learn
something it was not intended to learn or do something that humans do not want it
to do.?® These are some of the reasons why the use of machine learning in the context
of weapon systems has been limited to experimental research. The introduction of
machine-learning capabilities in deployed systems is unlikely in the near future unless
the engineer community manages to solve some of the methodological problems that

28 Goodfellow, I., Bengio, Y. and Courville, A., Deep Learning (MIT Press: Cambridge, MA, 2016); and Murnane, K.,
‘What is deep learning and how is it useful?’, Forbes, 1 Apr. 2016.

29 Gershgorn, D., ‘See the difference one year makes in artificial intelligence research’, Popular Science, 31 May 2016.

30 Wissner-Gross, A., ‘Datasets over algorithms’, Edge, 13 June 2017.

31 Righetti (note 18).

32 postma, E., ‘Deep learning: the third neural network wave’, Data Science Center Tilburg Blog, Feb. 2016.

33 Roff, H. and Singer, P. W., ‘The next president will decide the fate of killer robots—and the future of war’, Wired,
6 Sep. 2016.


https://www.edge.org/response-detail/26587
https://www.tilburguniversity.edu/research/institutes-and-research-groups/data-science-center/blogs/data-science-blog-eric-postma/
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learning systems, particularly those that can learn online, pose to existing methods
of verification (i.e. methods that are used to ensure that a system conforms with a
regulation, requirement, specification or imposed condition; the issue of verification
is further discussed in chapter 4).

V. Conclusions

The key conclusions from this brief introduction to the technological foundation of
autonomy can be summarized in two points.

First, the study of autonomy as a general attribute of a weapon system is imprecise
and potentially misleading. Autonomy may serve very different capabilities in different
weapon systems. For each of these capabilities the parameters of autonomy, whether
in terms of the human-machine command-and-control relationship or the sophisti-
cation of the decision-making process, might vary greatly, including over the duration
of a mission. In this regard, the continued reference to the concept of LAWS in the
framework of the CCW may be deemed problematic. It has trapped states and experts
into a complex and contentious discussion about the level at which a system might
be deemed autonomous, while in reality the concerns—be they from a legal, ethical
or operational standpoint—need to be articulated on the use of autonomy for specific
functions or tasks. Future CCW discussions could, therefore, usefully benefit from
a conceptual reframing and a shift from a platform- or system-centric approach to a
functional approach to autonomy. Focusing on function and capabilities of ‘autonomy
in weapon systems’ rather than the development of LAWS as a category of weapon
could foster a much more consensual and constructive basis for discussion.3*

If there is one technological development that future GGE discussion should focus
on it is machine learning. Learning is often described as an increasingly important, if
not the defining, feature of the future of autonomy in weapon systems. There seems
to remain a lack of understanding, and occasionally some confusion, among CCW
delegates about what machine learning actually is, how it works and to what extent
it could unlock significant advances in autonomy in weapon systems. It would, there-
fore, be useful if the GGE could focus some of its work on machine learning’s poten-
tial and the limitations of its algorithms with regard to further advancing autonomy
in weapon systems. Clarifications about the difference between ‘offline’ and ‘online’
learning—whether in terms of potential, limitations or risks—would be particularly
welcome. There is also one near-term development that deserves particular scrutiny:
the use of deep-learning algorithms for the training of automatic or automated target
recognition (ATR) systems (discussed in more detail in chapter 3). These are likely
to be used to make ATR systems learn to differentiate between military and civilian
objects. It would be useful to know what the implications of such a development would
be, as they could be a key factor in assessing the legality of a system under IHL when
conducting weapon reviews pursuant to Article 36 of Additional Protocol I of the
1949 Geneva Conventions (see chapter 4).35

34 This view is also shared by a number of experts that have studied the development of autonomy in weapon
systems, including Kerstin Vignard, Chief of Operations at the UN Institute for Disarmament Research (UNIDIR).
Vignard stressed this point in her statement at the 2016 CCW Informal Meeting of Experts on Lethal Autonomous
Weapon Systems in Geneva in Apr. 2016. Vignard (note 7).

35 On autonomy and Article 36 see Boulanin, V., ‘Implementing Article 36 weapon reviews in the light of increasing
autonomy in weapon systems’, SIPRI Insight on Peace and Security, no. 2015/1, Nov. 2015.


http://books.sipri.org/files/insight/SIPRIInsight1501.pdf
http://books.sipri.org/files/insight/SIPRIInsight1501.pdf

3. What is the state of autonomy in weapon systems?

1. Introduction

This chapter provides a factual overview of the current state of autonomy in weapon
systems. It aims to aid policy makers and the interested public to gain a more concrete
sense of (@) the actual functions and capabilities of autonomy in weapon systems; and
(b) how autonomy is currently used. The chapter proceeds as follows. The remain-
der of the introduction presents the dataset developed by SIPRI for the purpose of its
mapping exercise. Section IT maps the existing application area of autonomy in cur-
rent weapon systems. Section III presents the major types of weapon systems that may
be deemed autonomous according to some definitions.

Introducing the SIPRI dataset on autonomy in weapon systems

In order to obtain an overview of the state of autonomy in existing weapon systems,
SIPRI designed and populated a dataset, which will be made publicly available on the
SIPRI website in November 2017.

The dataset provides general information on the types, purposes, origins (com-
panies/countries), users and development status of a sample of military systems that
include autonomous functions in at least one of the following capability areas: mobil-
ity, targeting, intelligence, interoperability and health management. The dataset is not
intended to be comprehensive. SIPRI has focused its data collection efforts on weapon
systems and unarmed military robotic systems that have been deployed or are under
development in the countries identified by SIPRI as among the largest producers of
arms in the world—namely, the USA, the UK, Russia, France, Italy, Japan, Israel, South
Korea, Germany, India, Sweden and China.?

The data was collected from a variety of sources, including industry guides, news-
paper articles, company websites, press releases, defence publications, reports from
NGOs, interviews, scientific articles and YouTube videos. Attempts were made to col-
lect a minimum of three independent sources on each system to verify information.
However, it has proved difficult to find and verify data for many of the systems due
to the lack of details available and uncertainty as to the reliability of certain infor-
mation (either because the source could be biased or because of translation issues).
For these reasons, the dataset features a colour code that grades the reliability of the
information collected.

As of April 2017, the dataset consisted of 381 different systems, including the
following.

1. Unmanned weapon systems that feature some autonomy in their critical func-
tions—that is, they can autonomously search for, detect, identify, select, track or attack
targets.?

! Countries listed by size of share of arms sales of companies listed in the STPRI Top 100 arms-producing companies
and military service companies for 2014. The SIPRI Top 100 lists the world’s 100 largest arms-producing companies
and military services companies (excluding China). These are ranked by volume of arms sales. While China is not cov-
ered by the SIPRI Top 100 due to the lack of data on arms sales, it is believed to be one of the largest arms-producing
countries. SIPRI considers that at least 9 of the 10 major state-owned conglomerates under which the Chinese indus-
try is organized would be listed in the Top 100 if official data was available. Fleurant, A. et al., “The SIPRI Top 100
Arms-Producing Companies and Military Services Companies, 2014’, SIPRI Fact Sheet, Dec. 2015.

2 A “weapon system’ is understood to be a system that may consist of multiple physical platforms, including carrier
and launch platforms, sensors, fire control systems and communication links needed for a weapon to engage a target.


http://books.sipri.org/files/FS/SIPRIFS1512.pdf
http://books.sipri.org/files/FS/SIPRIFS1512.pdf
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Figure 3.1. Military systems included in the SIPRI dataset by (a) frequency of weapon
systems compared with unarmed systems; (b) field of use; and (¢) status of development

Source: SIPRI dataset on autonomy in weapon systems.

2. Unmanned weapon systems that do not have autonomy in their critical functions
but feature autonomous functions in any of the other capability areas covered by the
study—namely mobility, intelligence, interoperability and health management.

3. Unmanned and unarmed military systems—uses of which include (but are not
limited to) intelligence, surveillance and reconnaissance (ISR) missions or logistics
(supply) missions—that feature any of the capability areas covered by the study.

Systems within the last two categories were included to provide a broader picture of
the state of autonomy in unmanned military systems, and because these systems could
eventually be weaponized (in the case of unarmed systems) or fitted with autonomous
targeting capabilities in the future.?

It should be noted that SIPRI focused its mapping exercise on weapon systems
rather than individual munitions. Guided munitions such as sensor-fused munitions,
cruise missiles and torpedoes were excluded, primarily for reasons of data collection
feasibility. Providing a detailed mapping of existing guided munitions would have
been a study in itself.

Overall, the dataset contains 195 unarmed systems, 175 weapon systems and 11 sys-
tems whose armed status is unclear (see figure 3.1). Aerial systems make up the largest
proportion of the systems included in the dataset, and development has been com-
pleted for the majority of systems covered.

I1. Existing functions and capabilities

What is the state of autonomy in military systems today? Extensive research shows
that existing military systems already include multiple autonomous functions. These
functions can be divided into five capability areas, which are here presented in order
of recurrence: (a) mobility; (b) targeting; (¢) intelligence; (d) interoperability; and
(e) health management (see figure 3.2). This section examines each capability area
based on the following two questions.

3 Cockburn, A., Kill Chain: Rise of the High-Tech Assassin (Picador: London, 2015).
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Figure 3.2. Autonomous functions in existing military systems, by capability area

Source: STPRI dataset on autonomy in weapon systems.

1. What can military systems do and not do autonomously?
2. What is the nature of the human-machine command-and-control relationship
when the systems execute the relevant capability autonomously?

I11. Autonomy for mobility

The predominant application area for autonomy in military systems is mobility. STPRI
has identified 277 military systems (out of the 336 in the dataset that can be deemed
mobile) that include functions which allow the system to govern and direct its own
motion within its operating environment without direct involvement of a human
operator.*

Functions and capabilities

Mobility-related autonomous functions that can be found in existing systems vary
greatly in terms of capability and technological sophistication. The most noteworthy
functions include (@) homing/follow-me; (b) autonomous navigation; and (¢) take-off
and landing.

4 Note that the autonomous capabilities of munitions as launched by air defence systems were not included in this
study, as the dataset focuses only on complete military systems.
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Homing and follow-me

Homing and follow-me are, from a technical standpoint, simplistic forms of self-
direction, which work on the same principle but have different purposes. Homing is a
capability that is usually associated with missile technology; it requires that the system
can find and track its targets, while follow-me refers to the ability of an unmanned sys-
tem to follow another system or a soldier. In both cases, the system directs its motion
towards a specific object or person that it detects and tracks through a radar, acoustic
or electromagnetic signal, or an electro-optical (visual) or infrared (IR) (heat) signa-
ture. The signal or signature that the system follows is pre-programmed in advance
and stored in the system memory. Existing systems have no ability to pick up new
signals once activated and deployed. When operated in a cluttered environment a sys-
tem might include an automatic sense-and-avoid capability to prevent collisions with
possible obstacles.

Autonomous navigation

Autonomous navigation is the most crucial capability when it comes to system self-
direction. It ensures that the system can accurately ascertain its position, and plan and
follow a route on its own.

Most military systems that reportedly feature an autonomous navigation capabil-
ity are arguably not truly autonomous in the sense that they rely on ‘waypoint nav-
igation”: the system merely follows a series of geodetic coordinates that are entered by
a human operator. Some systems, notably newer systems such as the MQ-4C Triton,
an unmanned aerial system (UAS) developed by Northrop Grumman for long-term
ISR missions, can autonomously plan a route, but the general navigation parameters
(e.g. speed, altitude and mission objective) are still set by a human operator.®

The actual navigational autonomy of existing systems is also relative to the com-
plexity of their operating domain (i.e. whether the system is operating on land, in the
air or at sea, and whether or not the operating domain is adversarial).

The technical requirements are generally lower for aerial systems and maritime
systems than ground systems, for the simple reason that the air and sea domains are
typically far less complex than the land domain. The air and sea domains feature few,
if any, obstacles and fewer unforeseeable environmental variations. In theory, way-
point navigation and a simple sense-and-avoid capability may be sufficient to ensure
that an aerial or maritime system can navigate in complete autonomy for extended
periods.

The land domain, especially in a military context, displays far greater complex-
ity: (@) the structure of the terrain can vary markedly; (b) the domain may include
many different types of obstacles; and (¢) the system may need to interact with other
autonomous agents—either other machines or humans—whose behaviour might be
unpredictable. To navigate autonomously and to identify paths and obstacles, ground
systems need to include advanced vision-based guidance systems or inbuilt pre-
mapping of the environment or both. Existing ground systems that have an autono-
mous navigation capability tend to rely heavily on pre-mapping, partly because the
state of the art vision-based guidance technology is not sophisticated enough. This
means that most current ground systems are only capable of navigating autonomously
if an area is known in advance and not subject to major changes, which drastically
restricts the type of mission that they can perform autonomously. Such missions
could include perimeter surveillance (around borders, military bases or critical infra-
structure) and logistics.

5 Rogoway, T., “The Navy has the ultimate MH370 search tool, it’s just not operational’, Foxtrot Alpha, 18 Mar. 2014.


http://foxtrotalpha.jalopnik.com/why-mq-4c-triton-the-ultimate-mh370-search-tool-isnt-1545912657
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With the notable exception of missile systems and guided munitions—which are
generally non-recoverable systems—military systems that feature an autonomous nav-
igation capability are intended to operate in such a mode only in non-adversarial con-
ditions. They do not have sufficient perception or decision-making capabilities to cope
with adversaries that might actively seek to defeat their guidance system. One of the
key vulnerabilities of these systems is that they typically rely on Global Positioning
System (GPS) guidance, which makes them vulnerable to GPS jamming technologies.
However, interest in systems capable of operating in GPS-denied environments is
high, and GPS anti-jamming protection and non-GPS-based guidance systems seem
to be important features in the latest generation of unmanned systems. In addition to
jamming, enemies can also use strategies such as spoofing and cyber-attacks.®

Take-off and landing

An increasingly common feature among aerial systems is autonomous take-off and
landing. From a technical standpoint, it is perhaps more appropriate to describe this
capability in military systems as ‘automatic take-off and landing’ since these systems
follow a very strict set of predefined rules, with the entire procedure operated by an
algorithm. Reportedly, the technology has reached the point where machines out-
perform humans in terms of precision and reliability. One study notably found that
the accident rate is lower when these phases of the flight are automated rather than
being remotely operated by a human.”

Human-machine command-and-control relationship

Autonomy as a complement of remote control

The nature of the human-machine command-and-control relationship varies from
one system to another. It is important to note that the aforementioned autonomous
functions are most often used to complement remote control. Autonomous navigation,
homing and follow-me are usually used to discharge humans from operating the sys-
tem during phases of the mission where human cognitive capabilities are not essential
or not the most appropriate. Autonomous take-off and landing capability is aimed at
reducing the risk of accident when a system is supposed to take off or land in con-
ditions that require high precision (e.g. take-off from or landing on an aircraft carrier).
These features are also used to improve recoverability of systems in case of loss of
communication, as they may be used to make the system ‘return to base’ or proceed to
an emergency landing.

Mission autonomy

Existing systems that, once launched, navigate in complete autonomy, with little or no
direct human supervision, can be divided into the following three categories.

1. Aerial, land and maritime systems that are deployed to conduct pre-programmed
manoeuvres in known and semi-structured environments. Examples include the
Amstaff, a tactical unmanned ground system (UGS) developed by Automotive Robotic
Industries (Israel), which is capable of conducting perimeter protection operations
autonomously.

6 A ‘spoofing’ attack involves tricking a system’s sensors using false information in order to alter the system’s behav-
iour to the attacker’s advantage. See Samuelson-Glushko Technology Law and Policy Clinic, ‘Jamming and spoofing
attacks: physical layer cybersecurity threats to autonomous vehicle systems’, Submission to National Highway Traffic
Safety Regulations, Washington, DC, 21 Nov. 2016, p. 5.

7 williams, K. W., A Summary of Unmanned Aircraft Accident/Incident Data: Human Factors Implications (Office of
Aerospace Medicine: Washington, DC, 2004).


https://tlpc.colorado.edu/wp-content/uploads/2016/11/2016.11.21-Autonomous-Vehicle-Jamming-and-Spoofing-Comment-Final.pdf
https://tlpc.colorado.edu/wp-content/uploads/2016/11/2016.11.21-Autonomous-Vehicle-Jamming-and-Spoofing-Comment-Final.pdf
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2. Unmanned systems that are intended to conduct long-term ISR missions in an
environment where communications are difficult (e.g. underwater).

3. Missile systems and unmanned combat systems that are intended to strike targets
in communication-denied environments.

IV. Autonomy for targeting

The second most notable application area of autonomy in weapon systems is targeting.
STPRI found that autonomy is used in at least 154 systems to support some, if not all, of
the steps of the targeting process (at the tactical level), from identification, tracking,
prioritization and selection of targets to, in some cases, target engagement.® Rather
than discussing the systems themselves (they will be presented in more detail in sec-
tions VIII to XIII), this section focuses on the technology that supports the advance
of autonomy for targeting.

Function and capabilities

‘Autonomous’ or ‘automated’ target recognition?

There is an open debate over whether it is appropriate to discuss autonomy in the
area of targeting because the software technology that existing weapon systems use
to find and attack targets is, from a technical standpoint, closer to basic automation
than autonomy.

Target recognition software, often labelled as ‘automatic or automated target recog-
nition software’ (ATR software), was invented in the 1970s and has relied on the same
principle ever since: pattern recognition. Such software is programmed to recognize
target types based on predefined target signatures. The decision-making process is
simple: the target signature either matches or does not match a template that is stored
in the target identification library.® When multiple targets can be identified, the sys-
tems also prioritize between them based on strict predefined criteria, which are likely
to vary depending on the operational situation.®

It is important to note that ATR software has no deliberative autonomy. It can only
identify and fire upon target types that have been predetermined by the human oper-
ator, and has no capability to learn new target signatures once deployed.

Automated target recognition

The target identification capabilities that can be found in existing weapon systems
are, all in all, rather rudimentary.

In the majority of cases, ATR software can only recognize large and well-defined
military objects: tanks, aircraft, submarines and radar. The way the software recog-
nizes them varies depending on the nature of the targets, but generally it uses simple
criteria: tanks are often recognized based on their shape and height, missiles are typ-
ically detected based on velocity, radio-frequency emission or both, while submarines
are usually identified based on their acoustic signature. Robotic sentry weapons are
the only type of weapon system to use ATR software to detect human targets. The
actual recognition capability is very crude and the software can only recognize that

8 For an analysis of the entire targeting process and how it may be carried out at the tactical, operational and stra-
tegic level see Ekelhof, M., ‘Human control in the targeting process’, ed. R. Geif}, Lethal Autonomous Weapons Systems:
Technology, Definition, Ethics, Law and Security (German Federal Foreign Office: Berlin, 2016), pp. 66-75.

9 Roff, H., ‘Sensor-fused munitions, missiles and loitering munitions: speaker’s summary’, Autonomous Weapon
Systems: Implication of Increasing Autonomy in the Critical Functions of Weapons, Expert Meeting, Versoix,
Switzerland, 15-16 Mar. 2016, pp. 33-34.

10 For an analysis of the difference between reactive and deliberative systems see chapter 2 of this report.
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the target is a human. It does not have the ability to distinguish whether the human is
a civilian or a soldier (this type of weapon system is further discussed in section XI).

The performance of ATR systems in general is also highly sensitive to variations
in the environment. One report found that ATR performs reliably under favourable
weather conditions and when the target is located in an uncluttered background.™
As soon as the weather conditions deteriorate, and the target background becomes
cluttered, the false detection rate of ATR software increases significantly. This means
that weapon systems using this technology cannot be used safely in all circumstances.

ATR systems can only recognize predefined target types. They are unable them-
selves to make the evaluations necessary to ensure an attack complies with the rules
and principles of international law in the conduct of hostilities, namely the obligations
of distinction, proportionality and precaution (these principles are discussed in more
detail in chapter 4). It is perhaps worth noting that systems can in fact apply the prin-
ciple of distinction, but only in a very crude manner: they simply ignore everything
that does not match the predefined target. For example, they are unable to evaluate
whether the detected target has surrendered or is hors de combat for another reason.
The only known exception is Samsung’s SGR-Al, a sentry guard robot (now retired),
which could detect surrender motions (arms held high to indicate surrender).? Exist-
ing systems are also unable to detect whether the target is surrounded by civilians and
civilian objects, which would be a fundamental requirement to the application of the
principles of proportionality and precaution.'®

Slow progress of ATR technology

The aforementioned limitations of ATR technology are not due to a lack of progress in
sensor technology; rather, they are the consequence of two recurrent problems associ-
ated with the development of ATR algorithms.

The first is the lack of training and test data. Target recognition algorithms need to
be trained and tested on a large sample of data that is related to the mission scenario
so as to expose the algorithm to all the variables that it will be expected to handle.
This means that the dataset needs to include appropriate data about the target, but
also conceivable variations owing to possible changes in operating environment (e.g.
different backgrounds or weather conditions). For many target types (notably humans)
and operational situations, finding data remains a fundamental challenge. This prob-
lem has been compounded by the fact that these datasets are often considered to be
classified information that cannot be circulated among the community of industry,
governmental and academic experts that are involved in the development of ATR
technology.™*

The second problem is that machine-learning techniques, such as deep learning,
which could significantly facilitate the programming of ATR algorithms—notably by
making ATR systems capable of learning by themselves the difference between mili-
tary target objects and civilian objects (e.g. a tank versus a school bus)—raise concerns
with regard to predictability. As previously discussed in chapter 2, learning systems
operate like ‘black boxes’. Humans have trouble understanding how they learn: the
data and sensory input and the data output of the system are observable but the pro-
cess leading from input to output is unknown or difficult to comprehend. This creates
some uncertainty as to how the system might react to input data that is very different

L Ratches, J., ‘Review of current target recognition systems’, Optical Engineering, vol. 50, no. 5 (2011), pp. 1-7.

12 <samsung Techwin SGR-A1 Sentry Guard Robot’, Global Security, [n.d.].

13 Translating the requirements of proportionality and precaution into an algorithmic form remains challenging,
there is an open debate among experts as to whether it will ever be possible. For further discussion see chapter 4 of
this report.

4 Ratches (note 11), pp. 1-7.
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Box 3.1. Typology of the human-weapon command-and-control relationship according to
Human Rights Watch

Human Rights Watch describes the typology of the human-weapon command-and-control relationship as
follows.

1. Human-in-the-loop weapons: robots that can select and deliver force only with a human command.

2. Human-on-the-loop weapons: robots that can select and deliver force under the oversight of a human
operator who can override the robot’s actions.

3. Human-out-of-the-loop weapons: ro